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ABSTRACT

When developing object-oriented classes, it is difficult to de-
termine how to best reallocate the members of large, com-
plex classes to create smaller, more cohesive ones. Clustering
techniques can provide guidance on how to solve this alloca-
tion problem; however, inappropriate use of clustering can
result in a class structure that is less maintainable than the
original. The ExtC Visualizer helps the programmer under-
stand the class structure by visually emphasizing important
features of the class’s members and their inter-relationships.
More importantly, it helps users see how various clustering
algorithms group the class’s members. These insights help
a programmer choose appropriate techniques for refactoring
large classes.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering; H.5.2 [Information Systems]|: User Inter-
faces— Grraphical user interfaces (GUI); 1.2.6 [Artificial In-
telligence]: Learning— Concept learning; D.2.6 [Software
Engineering]: Programming Environments— Integrated en-
vironments

General Terms
Experimentation, Design

Keywords
Software visualization, clustering, refactoring, graph, main-
tainability

1. INTRODUCTION

Code maintenance is expensive. Some studies [23] indicate
that over 65% of the cost of software is maintenance. We
address a common maintenance problem in object-oriented
systems - the presence of large, complex classes with many
methods and attributes (a.k.a. members). This paper de-
scribes our research in visualizing how the members of large
classes can be re-organized using clustering techniques. Us-
ing the outputs of the clustering process, programmers can
refactor their large classes and improve their software.

Fowler [8] defines refactoring as “a change made to the inter-
nal structure of software to make it easier to understand and
cheaper to modify without changing its observable behav-
ior”, and he identifies a large class as being one of the “bad
smells” in software that indicate likely problems. Fowler rec-
ommends using the Extract Class refactoring to distribute
the methods and attributes from the large class into appro-
priate new classes.

Our research is primarily concerned with determining how
methods and attributes can be reallocated, so that class-
oriented refactorings like Extract Class can be applied. As
part of this, we want to help the programmer see the impor-
tant characteristics of these class members and their inter-
relationships, and based on these, how they can be recom-
bined to form more smaller, more cohesive classes.

Many tools, including our ExtC tool (Extract Class), help
programmers see potentially important characteristics of an
object-oriented class through the use of color, shape, and
size, as well as through the relationships between the mem-
bers as depicted in graphs. While such displays are help-
ful, large classes tend to produce crowded displays that ob-
scure the underlying structure. Moreover, some intraclass
relationships are complex and involve many methods and
attributes. What is needed is a display that emphasizes
the most important relationships within the class, including
complex ones.
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Figure 1: The ExtC GUI

Clustering algorithms can help deal with the complexity.
Clustering algorithms provide the ability for grouping things
based on their characteristics, so we can use them to discover
the underlying class structure that is critical for refactor-
ing. However, there are many potentially useful clustering
algorithms, and these can produce widely varying results
depending on the algorithm chosen, how the algorithms are
parameterized, and upon the characteristics of the underly-
ing data upon which the algorithms operate.

Some programmers may be content so see the outcomes of
the clusterings and then use these as the bases of new classes
via an Extract Class refactoring. Other programmers will
prefer to see the clustering algorithm in action, either to
see how closely the algorithm’s functioning matches their
intuition, or to see whether some intermediate results might
suit them better as the basis for new classes.

Our ExtC tool can show clustering algorithms in action (Fig-
ure 1). The user can control when these algorithms combine
(or separate) members. This provides the ability to see the
groups produced by the clustering algorithm. Moreover, be-
cause the user sees when members are combined (and to a
limited extent, why they are combined), he can determine
how much this matches his intuition.

The remainder of this paper is structured as follows. Sec-
tion 2 provides some background. Section 3 covers the visu-
alization features of the ExtC tool, while Section 4 discusses
observations we made while using ExtC to analyze a number

of open source software projects and the insights we gath-
ered based on the visualizations. Section 5 discusses related
work. The final section contains our conclusions and dis-
cusses potential future work.

2. BACKGROUND

This section gives a brief background of some software met-
rics that are relevant to clustering. It then discusses cluster-
ing and how it is relevant to refactoring. We discuss related
work in visualization in Section 5.

2.1 Metrics

Software metrics are used to measure various aspects of soft-
ware. We are particularly interested in measuring cohesion
(how well software elements fit together), which has proven
useful for identifying problematic software [4, 12, 19-21] and
for evaluating a modified software system relative to the
original one. Furthermore, because one of our goals is im-
proved cohesion for the new classes, an understanding of how
these metrics work can help us devise algorithms to improve
cohesion.

There are many such metrics described in the literature
[3, 5, 24, 25]. While many just consider the number of inter-
actions between methods and attributes, some also consider
the pattern of method and attribute interactions within a
class. For example, the Cohesion Based on Member Con-
nectivity (CBMC) metric [5] represents the access patterns
between methods and attributes as a graph, and calculates



the cohesiveness based on the number of nodes that need
to be removed to fragment the graph. Closely related to
CBMC is ICBMC (Improved CBMC) [25], which fragments
the graph by removing edges rather than nodes. Metrics
such as these offer insights into the underlying structure of
classes which can be exploited for determining how to ex-
tract new classes via clustering.

2.2 Clustering

Unsupervised clustering [10, 22] is useful for identifying sub-
sets of data that may represent coherent concepts. When
information about the classes’ members is used as input,
clustering algorithms can provide suggestions for improving
the quality of the class structure (its conceptual cohesive-
ness) [4, 17].

There are many different kinds of clustering techniques de-
scribed in the literature. Berkhin [1], for example, lists over
20 categories and subcategories of clustering algorithms. Each
algorithm has its own strengths, and because they have dis-
tinct ways of operating, different algorithms often produce
different results with the same data set. This section briefly
reviews two categories of algorithms that we are investigat-
ing for use in refactoring - agglomerative and divisive clus-
tering. Agglomerative clustering is a “bottom up” approach
to clustering, while divisive clustering is “top down”.

2.2.1 Agglomerative Clustering

Agglomerative clustering starts with seed entities and adds
closely related entities to them until some stopping criterion
is reached. The algorithms typically determine what consti-
tutes a closely related entity using a distance function (or
similarity function). Entities that are closest (most similar)
are combined, distances are recalculated, and the process
repeats.

The effective use of agglomerative clustering depends on
important choices regarding the parameters to these algo-
rithms:

1. Feature set - the characteristics of the entities to be
evaluated

2. Distance function - a function that measures the dis-
tance between the entities based on their feature set

Part of this parameterization involves the representation of
the clusters, i.e., how one defines the feature set of the cluster
and how the distance function takes those into account when
computing the distance between groups or between groups
and individual entities.

For the purpose of restructuring classes, the entities to be
clustered are generally attributes and methods, which are
themselves dissimilar. This raises the issue of how one cal-
culates the distance between an attribute and a method or
between groups of that combine attributes and methods.

Several researchers have used a Jaccard similarity metric [17,
19] for this. A Jaccard similarity metric calculates similar-
ity by dividing the number of features two entities have in
common by the number of featues total. As an example,

one can assign slightly different feature sets to methods and
attributes. The feature set for an attribute might include
the attribute itself and the methods that access it, whereas
the feature set for a method might include the method itself
and the attributes it accesses. When a cluster is formed, its
feature set becomes the merged features of its components.

We discuss how some other researchers have used this ap-
proach in Section 5, while Section 3.2.2 discusses our visu-
alization of agglomerative clustering.

2.2.2 Divisive Clustering

Divisive clusterers work by splitting large groups into smaller
ones. There are many divisive clustering techniques; this pa-
per discusses betweenness clustering, which is a graph-based
technique that has been applied to many domains [9], includ-
ing object-oriented software [4, 7]. One major difference be-
tween agglomerative and betweenness clustering is that the
latter does not rely on similarity or distance functions that
operate on the data.

Instead, betweenness clustering separates a connected graph
into disconnected subgraphs by removing edges based on
mathematical characteristics of the original graph. The sub-
graphs produced constitute the clusters. In a previous paper
[4], we discuss how we used betweenness clustering on the in-
traclass dependency graphs of some open source projects to
recommend refactorings. We discuss betweenness clustering
in the context of our visualizations in Section 3.2.2.

It is worth noting that betweenness clustering is similar in
spirit to the ICBM technique [25] for measuring cohesion,
which relies on determining the cut sets for a graph. In fact,
the creators of ICBMC mention that it could be used as a
basis for class restructuring.

3. EXTC VISUALIZER
3.1 Architecture

ExtC is designed to work as a plug-in in the Eclipse devel-
opment environment [18] as shown in Figure 2. In addition
to providing an overall architecture via its plug-in oriented
development framework, Eclipse provides extensive capabili-
ties for code navigation and for programmatically processing
Java code.

The Eclipse plug-in framework allows us to make use of
third-party plug-ins. For example, we have enhanced the
open-source Eclipse Metrics2 plug-in [15] to gather addi-
tional metrics and to store those metrics in a database. The
Derby plug-in [16] provides ExtC access to that database.

ExtC uses the JUNG graph framework [14] for many graph-
related tasks, including graph processing algorithms, layout,
and manipulation. It further provides the capability of read-
ing and writing graphs in either PajekNet or GraphML [2]
format, so they can be read by other graphing packages.

Classes selected in the ExtC user interface have their in-
traclass dependency graphs shown in an ExtC graph dis-
play (Figure 3) while the corresponding code is loaded into
Eclipse. In addition, the output of the clustering can be used
as an input to an Extract Class refactoring tool, although
this is currently a manual step.
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Figure 2: ExtC Architecture

3.2 Graphical User Interface

The ExtC GUI provides several views of the classes. The
metrics view provides a tabular display of metric data per-
taining to the classes of interest, while the dependency graph
view (Figure 3) allows one to explore the relationships be-
tween a class’s members. The agglomerative clustering (Fig-
ure 4) view and the betweenness clustering view (Figure 5)
help the user see how those clustering algorithms work on
the underlying member data.

Its interactive graph display makes use of 2D graphics and
color where the user can perform various manipulations (pan-
ning, scrolling, resizing, node movement, etc.). The cluster-
ing views have much the same capabilities, but also provide
animations showing how the clustering algorithms work on
the class’s members. The animation capabilities will be dis-
cussed more thoroughly in Section 3.2.2.

3.2.1 Graph Display

The ExtC graph display (Figure 3) helps the user visualize
the intraclass relationships between methods and attributes
based on a static analysis of the code in a Java file. Each
node represents either a method or an attribute. Edges be-
tween nodes indicate either a method calling a method, or a
method accessing an attribute. Colors distinguish methods
and attributes. Shapes distinguish methods, attributes, and
groups of those.

The user can alter the display of the graph as a whole by
choosing any of several graph layout algorithms or by “con-
densing” predefined groups of nodes. Different layouts high-
light different aspects of the graph structure. For example,
Figure 3(a) shows how a shallow structure displayed within
a directed acyclic graph (DAG) layout makes it easy to iden-
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Figure 3: Dependency Graph Displays

tify “data classes” that provide access to attributes but that
have little logic. After the initial layout, the user can move
nodes using the mouse or choose another layout to redisplay.

Our tool provides an interface where the user can choose to
size nodes by various criteria, for example, by their out de-
gree. (This can be useful in helping to identify large “brain
methods” [12] that contain too much functionality.) Cur-
rently, bases for sizing include in-degree, out-degree, and
hub and authority scores [11].

ExtC provides an interface where the user can choose to
“condense” nodes that should be considered as a group. Cur-



rently, there are two supported condensations (1) nodes rep-
resenting methods involved in recursive cycles, and (2) nodes
representing methods required by interfaces or superclasses.

Interfaces and superclasses impose constraints on cluster-
ing, e.g. a single class must implement all of the methods
specified in an interface. Consider Figure 3(b). This depen-
dency graph looks like it could be split into two meaningful
groups by eliminating three edges near the middle. However,
if one condenses all methods imposed by interfaces and su-
perclasses into a single triangular node, one gets the graph
in Figure 3(c). This “hub and spoke” arrangement is less
amenable to splitting via edge removal.

3.2.2  Clustering

The clustering views (Figures 4 and 5) are much the same
as the graph view, showing the dependency graph of a class.
The primary difference between the graph view and the clus-
tering views is the capability for animation. By manipulat-
ing a slider at the bottom of the screen, the user indicates
the number of iterations of the clustering algorithm that he
wants to execute. This may cause clusters of nodes to be
indicated on the screen. The exact graphical effect of mov-
ing the slider will depend on the clustering algorithm being
used.

The visualizations for agglomerative and betweenness clus-
tering are independent, but complementary. Because the al-
gorithms operate in a different manner and can produce dif-
ferent results, seeing the algorithms in action helps the pro-
grammer choose those clustering results that best match his
intuition and use these as the basis for forming new classes.

Agglomerative Clustering

Agglomerative clustering starts with individuals and merges
them together into groups. Many clustering systems [10]
show the results of agglomeration as dendrograms, which
are tree-based structures. Each level in the tree indicates the
merger of existing clusters of one or more elements. ExtC
includes such a tree-based display. It also provides a display
that shows the agglomeration algorithm acting on the soft-
ware dependency graph. The graph is customized for our
software task in that it shows the underlying dependencies
between the class’s members, but only shows the distances
between linked nodes, rather than for all node pairs.

The display for the agglomerative clustering is similar to
that of the graph view, with the following differences. Cir-
cular nodes represent unclustered members and are labeled
with the member name. Clustered nodes are polygons. Clus-
ters of only two members are represented as triangles while
larger clusters are represented by polygons where the num-
ber of sides is equal to the number of members in the clus-
ter. Cluster nodes are labeled with the names of one of their
members followed by one or more additonal special charac-
ters. The edges in the graph are labeled with the distances
between the nodes.

The user controls the clustering via a slider. Moving the
slider to the right causes more more clusters to form, and

the distance values on the edges to change.

Figure 4 shows agglomerative clustering in action. For this
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Figure 4: Agglomerative Clustering

example, we have created a distance function that produces
a small distance for the nodes that have few links except
to each other. At each iteration, the two nearest nodes are
merged. The node that is farthest from the center is re-
moved, while the more central one “absorbs” it and changes



shape. After the merge step is completed, the edge weights
(distances) are recalculated.

Figure 4(a) shows the dependency graph before the first ag-
gregation step. The first seven iterations of aggregation are
not shown. They are relatively uninteresting as the nodes
on the outskirts of the graph are being clustered with their
neighbors, and no cluster has more than three members.
Figure 4(b) shows the graph after the seventh iteration. Fig-
ure 4(c) shows the graph after eight clustering iterations,
when the first group of four is formed. Figure 4(d) shows
the formation of a new group of two, and 4(e) shows the
merger of that group with the group of four.

Betweenness Clustering

Betweenness clustering starts with a graph and removes edges
to break the graph into disconnected parts, which are the
clusters. The edges removed are those with the highest be-
tweenness, where the betweenness value is the number of
shortest paths between pairs of nodes that pass through
that edge. If one considers a graph to represent informa-
tion flow, where information passes through the edges, the
high betweenness edges indicate where a graph can be cut to
maximally disrupt information flow (or equivalently, group
together those nodes with highly shared information).
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Figure 5: Betweenness Clustering

The display for the betweenness clustering is also similar to
that of the graph view, and is based on a demo in JUNG
[14]. Circular nodes represent a class’s members and are
labeled with the member name. Clusters are represented

by multiple nodes having the same color. Edges are labeled
with their betweenness values.

The user controls edge removal via a slider. Moving the
slider to the right causes more edges to be removed from the
graph, more clusters to form, and the betweenness values on
the edges to change.

Figure 5(a) shows a dependency graph before the first edge
has been removed by betweenness clustering for the same
class as in the prior example. In this example, the removal
of a single edge (Figure 5(b)) is sufficient to form a new
cluster of five nodes towards the bottom right of the graph.
Each cluster has a different color.

The basic graph display can be fairly cluttered for large
classes. However, by toggling the grouping feature, the user
can cause each cluster of nodes to be put close together (Fig-
ure 5(c)). Each cluster still has distinct colors, but now its
members are arranged in a tight circular layout. This focuses
the user’s attention on the groups and their interactions.

The most visible links now convey a different meaning. The
links between the nodes of a group are generally obscured
due to the tight packing, so the most visible links are the
grey links between clusters. These indicate edges that have
been removed to separate the groups and indicate locations
where the classes to be created will be coupled.

4. DISCUSSION

This section discusses observations we made while using
ExtC to analyze a number of open source software projects
and the conclusions we reached based on the visualizations.
These conclusions encompass several broad areas:

e Possible improvements to the visualizations
e Insights into how the clustering algorithms worked

e Potential improvements to the clustering algorithms
in the context of refactoring large classes, i.e., domain
knowledge that should be considered by the clustering
algorithms.

The following subsections discuss these observations and
conclusions.

4.1 Graph View
4.1.1 Cohesion and Clustering

Observation: In a DAG layout, many of the “leaves” of the
graph were the expected star-shaped attributes; however,
there were also fairly many circle-shaped methods. Upon
investigating the corresponding code, some of these methods
were shown to be “no-ops” or simple descriptors required by
interfaces, while others made heavy use of other classes.

Conclusion: Because most of the popular cohesion met-
rics concentrate on relationships between methods and at-
tributes within a class, these leaf methods, and the associ-
ated calling methods, will cause misleadingly low cohesion
scores. This may cause suboptimal results when clustering
using cohesion measurements as part of the distance func-
tion or stopping criteria.



4.1.2 Method Chains and Clustering Criteria
Observation: Many call graphs have “chains” of method
calls, where each method in the chain calls only one other
method from the class, terminating with a method acessing
a single variable.

Conclusion: If there is a member that is only connected to
a single other member, those members should be clustered.
An agglomerative clusterer’s distance function should cap-
ture this idea.

4.1.3 Graph Density

Observation: 1t is difficult to see the relative densities of
different areas of graphs that represent classes with hundreds
of members.

Conclusion: Betweenness clustering helps by highlighting
the less dense areas of a graph when the high betweenness
edges are removed and the edge colors are changed.

4.2 Agglomerative Clustering

Based on our tentative conclusion that chains of methods
should be clustered, we decided to run some agglomerative
clustering experiments where the distance function was pri-
marily based on the number of edges on the shortest path
between nodes, with a fractional secondary distance being
added based on the number of edges each node had. (The
secondary distance was to ensure that nodes with many con-
nections would be joined after those that were more exclu-
sively linked.)

4.2.1 Visualization “Fast-forwarding” Needed
Observation: Many of the initial groupings are somewhat
obvious, as the nodes with only one connection are com-
bined with their neighbors. For large classes, this makes the
beginning of the animation fairly uninteresting.

Conclusion: We should provide a user option for “fast-forwarding”

past specified kinds of agglomerations. It may be useful to
provide options for fast forwarding, e.g. until a group of a
specified size is reached.

4.2.2 Distance Functions

Observation: Squares (indicating three clustering steps) were
appearing on the graph while there were still singly con-
nected circles (indicating an unclustered member). This in-
dicates that when there are multiple chains of nodes in the
original graph, a single chain might be involved in multiple
clusterings before another chain is involved in any.

Conclusion: A distance function that only looks at the cur-
rent state of the graph and ignores the original state may
give counterintuitive results.

4.2.3 Special Handling for Deprecated Methods
Observation: Some of the first nodes to be agglomerated
involved deprecated methods.

Conclusion: Deprecated methods need to be a special case
for class refactoring. Presumably, they were deprecated, be-
cause they could not be safely removed from the class. Vi-

sually, these should be grouped with the other condensed
nodes.

4.2.4  Variable Results

Observation: Running the same algorithm on the same data
multiple times can give varying results. This occurs when
multiple edges each have the same (smallest) distance.

Conclusion: Nondeterminism is bothersome. This could be
eliminated in many cases by having a more precise distance
function. On the other hand, when two distances are the
same, or nearly so, the user might prefer seeing the alterna-
tive clusterings. This warrants further study.

4.3 Betweenness Clustering

4.3.1 Edge Weight Recalculation

Observation: When one removes the edge with the high-
est betweenness value, there can be a drastic shift in edge
weights when they are recalculated. This occurs when the
removal of the edge disconnects two subgraphs. The nodes
that were connected by the high betweenness edge tended
to be central to the pre-split graph. After the graph is di-
connected, they tend to be peripheral to the new subgraphs.

Conclusion: Attempts to be efficient by cutting down on
betweenness recalculation may give faulty results.

4.3.2 Node Weighting Based on Method Size
Observation: The betweenness clustering algorithm is sensi-
tive to long chains of links. Consider the call graph shown in
Figure 6(a). Suppose the method in the lower right is a large
method that should be broken up into smaller, more main-
tainable pieces. After performing several Extract Method
refactorings, one has a functionally equivalent class with the
call graph in Figure 6(b). However, betweenness clustering
now produces different groups.

Conclusion: This weakness might be addressed by node
weighting, e.g. giving nodes representing large methods
more weight than nodes representing small methods.

4.3.3 Data Classes

Observation: Some large, noncohesive classes are largely
“data classes” composed of attributes and their accessors.

Conclusion: Because we are primarily interested in splitting
up a class’s logic, data classes should be not be considered.
These should be detectable programmatically.

4.3.4 “Special” Members

Observation: Some of the nodes with the most links corre-
sponded to methods that were not really part of the “busi-
ness logic” of the class. These include nodes that represented
“informational” methods (calls to loggers, toString, ...) and
nodes that represented “generic” methods that consider most
if not all of the fields (e.g. clone and equals), and probably
cross-cutting concerns.

Conclusion: To help clarify the fundamental logic of the
class to the user, it is highly beneficial to remove nodes that
are not part of the “business logic”, but are connected to
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Figure 6: Betweenness Clustering and Method Ex-
traction

many other nodes. Such nodes may not have a large effect
on the ultimate results, but they do decrease efficiency and
introduce noise.

It would be nice to be able to automatically dispose of infor-
mational nodes, but this is difficult. For example, one could
automatically eliminate clone from consideration. However,
some of the code we have analyzed does most of its cloning
work in a related method that clone calls. To adjust for the
vagaries of highly connected nodes, we added a filter to the
UI that enables the user to indicate nodes that should not
be displayed.

Furthermore, many of these special members should not be
moved exclusively to one of the split classes, but should
themselves be split between the new classes. For example,
each new class will likely want its own logging class, toString
methods, etc.

4.3.5 “Short cut” Edges

Observation: Some high betweenness edges are just “short
cuts” between some nodes that may also be linked indi-
rectly, therefore betweenness clustering may remove edges
that were not part of the cut set.

Conclusion: We had specified several a priori conditions
meant to ensure the quality of the proposed new class struc-
ture. One of the heuristic criteria specified for being an
acceptable group was that the number of nodes in the new
group should be at least four times the number of edges
removed. This criterion was intended to limit the amount

of coupling introduced by extracting a new class. Unfor-
tunately, it can result in false negatives when edges are
removed from the graph that are not part of the cut set,
because these edges do not indicate coupling between the
newly created classes.

Our original criteria should be modified as follows. Instead
of a simple 4x multiplier based on edges removed, the density
of the proposed clusters should be compared with that of the
subgraph from which it came. Alternatively, only the edges
removed that were part of the cut set should be considered
in the 4x calculation.

4.3.6 Betweenness and Directed Graphs

Observation: When the graph is directed, the highly weighted
edges tend to indicate those method calls that have the
largest call tree. Removing edges just serves to isolate the
busiest methods.

Conclusion: Betweenness clustering on directed call graphs
is not helpful for determining how to extract classes.

S. RELATED WORK

There has been significant work regarding the identifica-
tion and visualization of object-oriented software that needs
refactoring [12, 21], but relatively little work on visualizing
how these problematic classes could be improved. Contribu-
tions have come from several areas. In addition to work in
visualization, there have been contributions from the fields
of refactoring, machine learning and clustering, graph the-
ory, metrics, and network analysis.

The work on visualizing how object-oriented software can
be improved by refactoring has shown a steady progression
over the years. Simon and his colleagues [19] introduced a
Virtual Reality Modelling Language (VRML) visualization
to present distance information between class members in
three dimensions, so programmers might see opportunities
to move methods or attributes between classes or to perform
Extract Class or Inline Class refactorings. Their visualiza-
tion shows the proximity of the classes’ members based on a
Jaccard similarity metric, but does not explicitly show the
relationships between them.

Churcher and his colleagues [6] capture those relationships.
Their 3D graphs of classes include relationship information
as links. They point out how various graph shapes show dif-
ferent degrees of cohesion. They further note the relation-
ship between graphs indicating low cohesion and the possi-
bilities for splitting a class, but they do not provide further
guidance about how that split might be accomplished.

Noack’s thesis [13] does describe how a split could be done.
While his primary emphasis is on determining how to lay
out call graphs to emphasize the structure of software using
clustering techniques, he also provides several techniques for
splitting the graph to separate dense areas of the graph (sim-
ilar to betweenness clustering).

In an approach somewhat similar to ours, Dietrich, et al,
[7] use a variation of betweenness clustering to help identify
opportunities for reorganizing software modules. Based on



a specification of how many edges are to be removed, their
tool suggests groupings of software components.

None of the previously mentioned tools showed clustering in
action; however, there has been some activity in the network
analysis community. For example, the JUNG graph frame-
work [14] provides a clustering demo graphically illustrating
how betweenness clustering works on social network data,
and we used this as the basis of our betweenness clustering
visualization of object-oriented software.

Most of the work above has involved some kind of graph-
based visualization; however, it is worth mentioning some
clustering work for the purposes of refactoring classes that
is not graph-based and does not have a significant visual
component. Serban and Czibula [17] were among the first
researchers to apply clustering techniques to the problem of
refactoring classes. They created a system to enable experi-
mentation with various ways of recombining attributes and
methods into classes. In most of their experiments with ag-
glomerative clustering, they used a Jaccard similarity met-
ric. Unfortunately, it can be difficult to understand how
these work without corresponding visualizations.

6. CONCLUSIONS

Our goal is to make object-oriented software easier to main-
tain by breaking large, noncohesive classes into smaller, more
cohesive ones. Because programmers will make the final
judgment about how classes will be organized, it is impor-
tant that they see how a particular recommendation came
about. ExtC helps by showing how clustering algorithms
group (reallocate) methods and attributes for the formation
of new classes.

We have provided visualizations for two major categories
of clustering algorithms - agglomerative and divisive. Our
experiences using ExtC thus far have inclined us to favor
divisive clustering techniques, like betweenness clustering,
over agglomerative techniques for two main reasons. First,
divisive clustering matches up better with our mental model
of the task of splitting classes. When refactoring, one wants
to maintain the existing interface, so to be conservative, one
generally wants to extract one new class at a time. This is
consistent with making a single division of the graph. Sec-
ondly, divisive clustering generally require fewer steps than
agglomerative clustering for extracting classes. For a large
class, watching the many steps required to reach two clusters
can be extremely tedious.

ExtC has provided us some useful insights into our refactor-
ing tasks, so we intend to enhance it. Our main effort over
the next months is to expand the scope of ExtC beyond
working on the call graph of a single class. Some of the in-
formation that can be useful for clustering involves how the
studied class is used by other classes, and how it uses other
classes. Our tool should display these relationships and dis-
tinguish them visually from the intraclass relationships.

We also want to expand our tool to be applicable for other
class refactorings besides Extract Class. Move Method, Ex-
tract Subclass, and other refactorings have similar require-
ments to Extract Class in that they look for tight relation-
ships (clusters) between certain members that are not well

captured in the current class structure.

In addition to expanding the scope of what ExtC can do,
we would like to make it more flexible. For example, it
would be nice if a user could add some domain knowledge to
help the clustering algorithms generate better results. Right
now, the clustering algorithms work with little or no domain
knowledge, i.e. the clustering doesn’t know anything about
software and how it should be structured. As software engi-
neers we have clandestinely added some knowledge. For in-
stance, the call graphs themselves represent certain relation-
ships within the software. We have also added knowledge via
our hard-coded distance functions; however, an arbitrarily
complex user-defined (and domain aware) distance function
could be used to give more precise results. The challenge is
to determine how to let the user enter such knowledge for a
distance function. Perhaps a software domain specific rule
language can be constructed.

While there are enhancements to make, we feel that ExtC al-
ready provides capabilities that are useful to object-oriented
programmers. There has been little prior work on applying
clustering algorithms to refactoring large classes and, as far
as we know, ExtC is the first tool that suggests how to refac-
tor software by showing clustering in action.

7. ACKNOWLEDGMENTS

We thank James Noble for his helpful review comments.

References
[1] P. Berkhin. Survey of clustering data mining tech-
niques. Technical report, Accrue Software, 2002.

[2] U. Brandes, M. Eiglsperger, and J. Lerner. GraphML
primer.  graphml.graphdrawing.org/primer/graphml-
primer.html, 2005.

[3] L. Briand, J. Daly, and J. Wust. A unified frame-
work for cohesion measurement in object-oriented sys-
tems. In Proceedings of the Fourth International Soft-
ware Metrics Symposium, 1997., pages 43-53, 1997.

[4] K. Cassell, P. Andreae, L. Groves, and J. Noble.
Towards automating class-splitting using betweenness
clustering. In 24th IEEE/ACM International Confer-
ence on Automated Software Engineering, Auckland,
New Zealand, Nov. 2009.

[5] H. S. Chae, Y. R. Kwon, and D.-H. Bae. A cohesion
measure for object-oriented classes. Software Practice
and Ezperience, 30(12):1405-1431, 2000.

[6] N. Churcher, W. Irwin, and R. Kriz. Visualising class
cohesion with virtual worlds. In Proceedings of the
Asia-Pacific Symposium on Information Visualisation
(APVIS), page 89aAS97. Australian Computer Society,
Inc, 2003.

[7] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson,
and M. Duchrow. Cluster analysis of java dependency
graphs. In Proceedings of the 4th ACM Symposium on
Software Visualization, pages 91-94, Ammersee, Ger-
many, 2008. ACM.



8]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring : Improving the Design of Ex-
isting Code. Addison-Wesley, Boston, 1999.

M. Girvan and M. Newman. Community structure in
social and biological networks. Proc Natl Acad Sci U S
A, 99(12):7826, 7821, June 2002.

A. Jain, M. Murty, and P. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):323, 264, 1999.

J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604-632, 1999.

M. Lanza and R. Marinescu. Object-Oriented Metrics
in Practice. Springer-Verlag New York, Inc., 2006.

A. Noack. Unified quality measures for clusterings, lay-
outs, and orderings of graphs, and their application as
software design criteria. PhD thesis, Brandenburg Uni-
versity of Technology, Cottbus, Germany, 2007.

J. O’Madadhain, D. Fisher, S. White, and Y. Boey.
The JUNG (Java Universal Network/Graph) frame-
work. Technical Report UCI-ICS 03-17, School of Infor-
mation and Computer Science, University of California,
Irvine, 2003.

F. Sauer and G. Boissier. Eclipse metrics plugin con-
tinued. http://metrics2.sourceforge.net/, 2010.

Creat-
eclipse.

S. Schaub. Eclipse corner article:
ing database web applications with

http://www.eclipse.org/articles/article.php?file=Article-

EclipseDbWebapps/index.html, 2008.

G. Serban and I. Czibula. Object-Oriented software
systems restructuring through clustering. In Artificial
Intelligence and Soft Computing - ICAISC 2008, pages
693-704. Springer-Verlag, Berlin / Heidelberg, 2008.

S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn,
J. Kellerman, and P. McCarthy. The Java(TM) Devel-
oper’s Guide to Eclipse. Addison-Wesley Professional,
May 2003.

F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics
based refactoring. In Proceedings of the Fifth European
Conference on Software Maintenance and Reengineer-
ing, page 30. IEEE Computer Society, 2001.

N. Tsantalis and A. Chatzigeorgiou. Identification of
move method refactoring opportunities. IEEE Trans-
actions on Software Engineering, 35(3):347-367, 2009.

R. Wettel and M. Lanza. Visually localizing design
problems with disharmony maps. In Proceedings of the
4th ACM Symposium on Software Visualization, pages
155-164, Ammersee, Germany, 2008. ACM.

I. H. Witten and F. Eibe. Data Mining. Hanser Fach-
buch, 2001.

S. Yip and T. Lam. A software maintenance survey.
In Proceedings First Asia-Pacific Software Engineering
Conference, pages 70-79, 1994.

[24] Y. Zhou, J. Lu, and H. L. B. Xu. A comparative study

of graph theory-based class cohesion measures. SIG-
SOFT Softw. Eng. Notes, 29(2):13-13, 2004.

[25] Y. Zhou, B. Xu, J. Zhao, and H. Yang. ICBMC: an im-

proved cohesion measure for classes. In Proceedings of
the International Conference on Software Maintenance
(ICSM’02), page 44. IEEE Computer Society, 2002.



