
Relaxing Ownership with Immutability

Hannes Mehnert Nicholas Cameron Alex Potanin
Victoria University of Wellington, Wellington, New Zealand

hannes|ncameron|alex@ecs.vuw.ac.nz

Abstract
Multiple ownership [4] introduced a novel approach to managing
object ownership information called “owners-as-boxes”. Each ob-
ject is placed in a “box” or context and the nesting relationship
between “boxes” or contexts respects the object accesses that hap-
pen during the program’s execution. No restrictions are placed on
which objects are allowed to access which other objects, rather the
ownership contexts provide a hierarchical, as opposed to a more
traditional, flat, view of the program’s memory. As with any own-
ership system, the objects never point ”into” another context, but
can point outwards from the context they are in. We show how in-
troducing object immutability, readonly references, and class im-
mutability allows to safely change ownership contexts the objects
belong to without breaking the ownership restrictions imposed by
multiple ownership. We describe a type system for a language with
ownership contexts and immutability, prove it sound, and state and
prove both ownership and immutability guarantees. Thus, we show
how immutability greatly benefits ownership-enabled languages.

1. Introduction
NB! The proofs in this technical report are unfinished and represent
a state of play for this work at the end of the research assistanship.
We hope to finish the proofs and submit this as a proper paper in
the future.

In current ownership systems the owner of an object is not vari-
ant with respect to subtyping, since this would impede soundness
of the type system. In this paper we introduce variant subtyping
with ownership, at least for immutable objects. The type system is
specified and soundness is proven.

The paper is structured as follows, in Section 2 different own-
ership and kinds of immutability are presented. In Section 3 we
present some motivating examples which should intuitively work.
In Section 4 we formalize our programming language, followed by
parts of the proofs in Section 5. In Section 6 we discuss our findings
and discuss related work, finally in Section 7 we conclude.

2. Background
This section presents a brief overview of the various kinds of own-
ership and immutability that have been subject to active research in
recent years.

[Copyright notice will appear here once ’preprint’ option is removed.]

2.1 Variants of Ownership
With ownership certain propositions about the heap layout can be
made at compile-time. There are roughly four different kinds of
ownership useful for different purposes:

• owners-as-dominators Every reference to an object is done via
its owner or any object its owner transitively owns. This is a
more traditional and the most conservative kind of ownership,
also known as deep ownership [5, 6].

• owners-as-modifiers Every object may have a readonly refer-
ence to any other object. Mutation of objects can only be done
via the owner. The ownership relationship is a dominator tree.
Universes traditionally support this kind of ownership [7, 9, 14].

• owners-as-permissions Every object can have a reference to
and mutate any other object with compatible ownership. No
dominator tree like hierarchy is present in such approach [1, 2].
This approach is sometimes known as shallow ownership [6].

• owners-as-boxes The ownership topology is preserved, but the
topology is not restricted in any way. The type soundness prop-
erty does not constitute an encapsulation property. However, the
ownership relation can be used to construct a precise picture of
the run time heap [4]. This approach is sometimes described
is descriptive ownership as opposed to prescriptive ownership
approaches in the items listed above.

In this paper, we concentrate on owners-as-boxes, or prescrip-
tive approach, by bulding on the Multiple Ownership work [4] by
one of the authors. Since this kind ownership has been explored the
least so far, it poses the most interesting exploration target for this
paper.

2.2 Kinds of immutability
There are three kinds of immutability generally distinguished in the
literature:

• Class immutability No instance of an immutable class may
be changed. An example is String in Java. This is the most
familiar kind of immutability to Java programmers.

• Readonly reference A readonly reference is an immutable
pointer to an object. The same object might be mutable if ac-
cessed via a different reference (an alias). This is useful to
allow a specific interface only read only access to an object.
This is the most familiar kind of immutability to C++ program-
mers where references can be marked with const to guarantee
their immutability. A significant area of research on immutabil-
ity concentrated on readonly references [3, 14, 17]

• Object immutability An immutable object cannot be changed,
even if other instances of the same class can be. For example
the keys of a Map in Java should be immutable, since behaviour
of mutated keys is not well-defined. Object immutability can
be used for optimizations and safe sharing between multiple

1 2010/8/2

threads. In contrast to the final keyword in Java, neither the
field itself nor the content of an immutable field can be modi-
fied, an example is a char[] in the String class. More recent
research concentrated on object immutability as a distinct kind
of immutability [10, 12, 18, 19].

In this paper, we support all three kinds of immutability above
to see their effect on the ownership. In Section 6 we discuss the
related work combining ownership and immutability, though this is
the first paper to address owners-as-boxes when it comes to adding
immutability of any kind.

3. Combination Language
The combined language which is presented in the following is
based on Featherweight Java with assignment. We introduce own-
ership parameter annotations and immutability parameters to types.
In the following paragraphs we motivate the definition of our com-
bined language by showing sound and unsound code examples.

Unsoundness of variant ownership Type systems which inte-
grate only ownership are non-variant about the ownership parame-
ter. If we pretend for a moment that an ownership type system has
a variant-owner subtyping rule regarding the � relation:

∆; Γ ` a � a′

∆; Γ ` C<a> <: C<a′>
(S-UC)

In Listing 1 an example is shown which uses S-UC.
First two classes, Foo and C, are defined in lines 1-5, where C

has a field f of type Foo with the same owner. In line 7 an instance
b of Foo is created, with the owner©. In line 8 another instance of
Foo is created, using b as owner. Thus, the relation a � b holds. In
line 9 C is created, using a as an owner. In line 10 an alias cb to ca
is created, which has type C. Since a is inside b, this ”upcast”
should be safe. In line 11 the field f of cb is assigned a new value,
new Foo. Since cb has owner b and the field f of class C has
the same owner as the class, this assignment is safe. But, in line 12
it turns out that the field f in object ca fails to have type Foo<a>,
since b6�a, and thus Foo<a> 6<: Foo.

So, adding S-UC leads to unsound code. The shown example is
similar to covariance of generics. Needless to say the field assign-
ment in line 11 is the cause of unsoundness rather than the field
access in line 12. If we forbid the field assignment, this code would
be sound; and would enable ownership variance.

Code listing 1 � and unsound subtyping
1: Class Foo<y> { }
2:
3: Class C<x> {
4: field Foo<x> f = new Foo<x>()
5: }
6:
7: Foo<©> b = new Foo<©>
8: Foo a = new Foo
9: C<a> ca = new C<a>()

10: C cb = ca
11: cb.f = new Foo()
12: Foo<a> caf = ca.f

Immutability Our mechanism to not allow the field assignment is
to introduce immutability into the type system. Then we introduce
variance of owners restricted for immutable objects:

∆; Γ ` a � a′

∆; Γ ` Cimmutable<a> <: Cimmutable<a
′>

(S-COVARIANT)

The subscripts immutable andmutable are used for all differ-
ent kinds of immutability:

• If a class definition has a subscript immutable, like class
Cimmutable {...}, it is class immutable. All instances of a
immutable class are immutable. For a given mutable class
Dmutable, there exists an immutable class Dimmutable, which
is a superclass of the mutable one.

• If an object of an immutable class is instantiated, this object is
object immutable Dimmutable<a> di = new Dimmutable<a>().

• If the binding type declaration contains the subscript immutable,
it is a read-only reference: Dimmuable<a> di = d, where d
may be mutable.

The code in Listing 2 shows that subtyping with immutable
classes is sound. The difference to the previous example is that each
class contains a mutability parameter, written as subscript (n, m).
The instantiated ca (in line 9) is an immutable object. Due to the
introduced subtyping rule S-COVARIANT widening the owner in
line 10 is valid, similar to an upcast. The field assignment in line
11 does not type check, because cb is immutable.

Code listing 2 � and immutability and subtyping
1: Class Foom<y> { }
2:
3: Class Cn<x> {
4: field Foon<x> f = new Foon<x>()
5: }
6:
7: Fooimmutable<©> b = new Fooimmutable<©>
8: Fooimmutable a = new Fooimmutable
9: Cimmutable<a> ca = new Cimmutable<a>()

10: Cimmutable cb = ca
11: cb.f = new Fooimmutable() /* type error */

Another interesting question arises, what is the type of cb.f
(in Listing 2)? By definition of class Cm it should be of type
Fooimmutable, whereas the actual type is Fooimmutable<a>.
Due to the covariant subtype relation,

Fooimmutable<a> <: Fooimmutable
holds in the given example, and cb.f can be safely assumed to be
of type Fooimmutable.

Immediate observations We successfully relaxed ownership by
introducing immutability.

An emerging question is what the subtyping relationship be-
tween a mutable and immutable object of the same class is. We
will look at this issues in the following. Another pending question
is how to deal with readonly references of mutable objects.

Subclassing of mutable classes If we allow immutable extension
of a mutable class, as shown in Listing 3, then setF in lines 6-8
will be inherited in class Cimmutable, defined in line 11. This leads
to a mutation of the field f of the immutable class Cimmutable in
line 17. The result is again an unsound field access in line 18, since
a preceq b Fooimmutable 6<: Fooimmutable<a>.

Therefore we do not allow an immutable class to be a subclass
of a mutable class. It is also counterintuitive, since a mutable class
has more methods (e.g. field setters) than an immutable.

Subclassing of immutable classes We allow mutable extensions
of immutable classes, an example is given in Listing 4. The im-
mutable class Dimmutable in lines 3-5 is extended by the mutable
class Cm in lines 7-9. The mutable instance, created in line 12, can
be assigned a new object for the field g (as done in line 13), because
this field is mutable. The immutable field f still cannot be mutated,
shown in line 14, which results in a type error.

2 2010/8/2

Code listing 3 Immutable extension of mutable class
1: class Foom<y> { }
2:
3: class Dn<x> {
4: field Foon<x> f = new Foon<x>()
5:
6: void setFmutable (Foon<x> newf) {
7: f = newf
8: }
9: }

10:
11: class Cimmutable<x> extends Dn<x> { }
12:
13: Fooimmutable<©> b = new Fooimmutable<©>
14: Fooimmutable a = new Fooimmutable
15: Cimmutable<a> c = new Cimmutable<a>()
16: Cimmutable cb = ca
17: cb.setF(new Fooimmutable())
18: Fooimmutable<a> cf = c.f /* type error */

Code listing 4 Mutable extension of immutable class
1: class Foom<y> { }
2:
3: class Dimmutable<x> {
4: field Fooimmutable<x> f = new Fooimmutable<x>()
5: }
6:
7: class Cm<y> extends Dimmutable {
8: field Foom<y> g
9: }

10:
11: Fooimmutable<©> b = new Fooimmutable<©>
12: Cmutable<a> c = new Cmutable<a>()
13: c.g = new Foomutable<a>()
14: c.f = new Fooimmutable<a>() /* type error */

We allow mutable extensions of immutable classes, furthermore
a mutable class C is a subtype of the immutable class C:

class Cm<o→[bl bu]> extends N

∆; Γ ` Cmutable<a> <: Cimmutable<a>
(S-MUTABLE)

Readonly references, Viewpoint adaptation A readonly refer-
ence can reference either a mutable or an immutable object. In
Listing 5 a class C is defined (lines 3-5) with a single field f (line
4). In line 9 a mutable instance c is made, which is aliased by a
readonly reference ci in line 10. This can be relaxed to be of type
Cimmutable by the introduced S-COVARIANT subtyping rule
(as seen with cbi in line 11). Now, since it is actually a muta-
ble object initially, nothing prevents us from assigning the field f
to a new instance of Foo in line 12. The result is a type error in
line 13, when the field f of object c is accessed, since the type is
Foomutable, not Foomutable<a>.

In order to fix this unsoundness issue we introduce viewpoint
adaptation [8]. The viewpoint adaptation relation (written B in
T-FIELD, T-ASSIGN and T-INVK) is defined for the formal and
actual type. It results in an immutable type if either the formal
or the actual type is immutable, and a mutable type if both input
types are mutable. With this setup, the assignment in line 12 of
Listing 5 is invalid, since the field f of reference cbi is of type
Fooimmutable and thus cannot be assigned to.

Code listing 5 Motivation for viewpoint adaptation
1: class Foom<y> { }
2:
3: class Cn<x> {
4: field Foon<x> f = new Foon<x>()
5: }
6:
7: Fooimmutable<©> b = new Fooimmutable<©>
8: Fooimmutable a = new Fooimmutable
9: Cmutable<a> c = new Cmutable<a>()

10: Cimmutable<a> ci = c /* readonly reference */
11: Cimmutable cbi = ci
12: cbi.f = new Foomutable()
13: Foomutable<a> c.f /* type error */

4. Formalism
The developed language is based on Featherweight Java [11], ex-
tends this with assignment, ownership and immutability annota-
tions.

The syntax is given in Figure 1, the runtime parts are distin-
guished by a grey background.

The possible expressions are null, variables, field access, field
assignment, method calls, allocation, access to adresses and error.

All types are classes. A class consists of its name, the mutability
parameter, ownership parameters, its superclass, a list of fields and
method declarations.

A method declaration consists of owner parameters, return type,
mutability parameter, parameter values and types and its body, with
return as the last statement.

A value is either an address or null.
A runtime type consists of a class and runtime contexts, which

are either world or an address. World is the top element of the
ownership relation.

A type consists of a class and contexts. Each context is either a
variable, a formal owner, world or an address.

A context environment is a mapping from a formal owner to
lower and upper bounds, either a context or bottom.

A variable environment contains a mapping from variables and
adresses to types.

A heap consists of addresses, each pointing to a runtime type
followed by values of the fields.

In Figure 2 the subtyping rules are introduced. Reflexivity and
transitivity S-REFLEX and S-TRANS are standard rules. The rule
S-CLASS defines that a specified subclass is a subtype after substi-
tution of the formal owner parameters. The rule S-MUTABLE was
introduced in the last section and defines that a mutable class is a
subtype of the immutable. The last rule, S-COVARIANT, is the core
contribution. It states that if two owners are in the � relationship,
an immutable class of the inner context is a subtype of the outer
context.

In Figure 3 the inside relation is defined. It is straightforward,
provides reflexivity (I-REFLEX), transitivity (I-TRANS), the top
element world (I-WORLD), the bottom element (I-BOTTOM), for
any variable or address the owner is inside of its types owner (I-
OWNER). Finally, in a context environment the owner of an object
is between the lower and upper bound.

3 2010/8/2

e ::= null | x | γ.f | γ.f = e | γ.<a>m(e) | expressions
new T | ι | err

Q ::= class Cm<o→[bl bu]> extends N {T f; W} class declarations
W ::= <o→[bl bu]> T mm (T x) {return e;} method declarations

v ::= ι | null values

R ::= Cm<r> runtime types
T,N ::= Cm<a> types

∆ ::= o→[bl bu] context environments
γ ::= x | ι | null vars and addresses
Γ ::= γ:T var environments

H ::= ι→{R; f→v} heaps

m,n::= immutable | mutable mutability

a ::= o | x | © | ι contexts
r ::= © | ι runtime contexts
b ::= a | ⊥ bounds

x, y variables
o formal owners
C classes
ι addresses

Figure 1. Syntax of FJ I O.

∆; Γ ` T <: T
(S-REFLEX)

∆; Γ ` T <: T′ ∆; Γ ` T′ <: T′′

∆; Γ ` T <: T′′

(S-TRANS)

class Cm<o→[bl bu]> extends N

∆; Γ ` Cn<a> <: [a/o]N
(S-CLASS)

class Cm<o→[bl bu]> extends N

∆; Γ ` Cmutable<a> <: Cimmutable<a>
(S-MUTABLE)

∆; Γ ` a � a′

∆; Γ ` Cimmutable<a> <: Cimmutable<a
′>

(S-COVARIANT)

Figure 2. FJ I O subtyping

∆; Γ ` b � b
(I-REFLEX)

∆; Γ ` b � b′′ ∆; Γ ` b′′ � b′

∆; Γ ` b � b′

(I-TRANS)

∆; Γ ` b OK

∆; Γ ` b � ©
(I-WORLD)

∆; Γ ` b OK

∆; Γ `⊥� b
(I-BOTTOM)

Γ(γ) = Cm<a>

∆; Γ ` γ � a0
(I-OWNER)

∆(o) = [bl bu]

∆; Γ ` o � bu
∆; Γ ` bl � o

(I-BOUND)

Figure 3. FJ I O inside relation for owners and environments.

In Figure 4 the reduction rules are shown. A field access is
reduced to the field value (R-FIELD). A field assignment changes
the heap H, such that the specific field value is replaced by the
new value (R-ASSIGN). In R-NEW a new object is instantiated,
resulting in a modified heap H, where the address of the new
object is bound, all fields of the object are initialized to null. A
method invocation (R-INVK) is reduced to the body of the method,
substituting the method arguments with the actual parameters.

In Figure 5 the remaining reduction rules are shown, RC-
ASSIGN and RC-INVK continue evaluation when the specific
expression (new value or parameter) is reducible. Access or as-
signment of a field of the object null or invocation of a method
of the object null results in the error state (R-FIELD-NULL, R-
ASSIGN-NULL, R-INVK-NULL). The rules RC-ASSIGN-ERR and
RC-INVK-NULL reduce to the error state if a subexpression re-
duces to error.

The Figure 6 shows the well-formedness rules for contexts and
types. A context environment is well-formed if either the owner is
in its domain (F-OWNER) or it the top element (F-WORLD) or the
bottom element (F-BOTTOM).

A type environment is well-formed if it contains a mapping for
every variable in its domain (F-VAR).

A class is well-formed (F-CLASS) if the actual owners are in the
formal bounds and the mutability parameter is less than or equal,
which is defined in Figure 10: immutable is less than mutable, and
reflexivity of the mutability parameter.

In Figure 7 well-formed environments are defined. Either it is
empty F-EMPTY or the upper and lower bound are well-formed
and the lower bound is inside the upper bound (F-ENV).

Well-formedness of heaps and configurations is shown in Figure
8. A heap is well-formed (F-HEAP) if for all addresses of the heap
Hthe types are well-formed, and all non-null field values these are
in the domain of H. An expression is well-formed (F-CONFIG) if
all free variables are bound in the heapH.

4 2010/8/2

H(ι) = {R; f→v}
ι.fi;H vi;H

(R-FIELD)

H(ι) = {R; f→v}
H′ = H[ι 7→ {R; f→v[fi 7→ v]}]

ι.fi = v;H v;H′
(R-ASSIGN)

H(ι) undefined fields(C) = f
H′ = H, ι→ {Cm<r>; f→null}

new Cm<r>;H ι;H′
(R-NEW)

H(ι) = {R; ...}
mBody(m<r>, R) = (x; e)

ι.<r>m(v);H [v/x]e;H
(R-INVK)

Figure 4. FJ I O reduction rules.

e′;H e′′;H′ e′′ 6= err

ι.f = e′;H ι.f = e′′;H′
(RC-ASSIGN)

ei;H e′i;H′ e′i 6= err

ι.<r>m(v, ei, e);H ι.<r>m(v, e′i, e);H′
(RC-INVK)

null.f;H err;H
(R-FIELD-NULL)

null.f = e;H err;H
(R-ASSIGN-NULL)

null.<r>m(e);H err;H
(R-INVK-NULL)

e′;H err;H′
ι.f = e′;H err;H′

(RC-ASSIGN-ERR)

ei;H err;H′
ι.<r>m(v, ei, e);H err;H′

(RC-INVK-ERR)

Figure 5. FJ I O reduction rules for congruence, null, and error propagation.

o ∈ dom(∆)
∆; Γ ` o OK
(F-OWNER)

∆; Γ ` © OK
(F-WORLD)

∆; Γ `⊥ OK
(F-BOTTOM)

Γ(γ) = T

∆; Γ ` γ OK
(F-VAR)

class Cm<o→[bl bu]>... ∆; Γ ` a OK n≤m
∆; Γ, this:Cm<a> ` [a/o]bl � a ∆; Γ, this:Cm<a> ` a � [a/o]bu

∆; Γ ` Cn<a> OK
(F-CLASS)

Figure 6. FJ I O well-formed contexts and types.

∆; Γ ` ∅ OK
(F-EMPTY)

∆; Γ ` bl, bu OK ∆; Γ ` bl � bu
∆, o→[bl bu]; Γ ` ∆′ OK

∆; Γ ` o→[bl bu],∆
′ OK

(F-ENV)

Figure 7. FJ I O well-formed environments.
∀ι→ {Cm<r>; f→v} ∈ H :

∆;H ` Cm<r> OK

fType(f, C<r>) = T′ ∆;H ` v : T′

∀v ∈ v : v 6= null⇒ v ∈ dom(H)
∆ ` H OK
(F-HEAP)

∆ ` H OK
∀ι ∈ fv(e) : ι ∈ dom(H)

∆;H ` e OK
(F-CONFIG)

Figure 8. FJ I O well-formed heaps and configurations.

In Figure 9 the auxiliary functions are shown. The function
fields returns the list of fields for a given class, which is empty
for the top class Object and the union of local fields and the fields
of the superclass for all other classes. The function fType returns
for a field and class the type of the field in the class, recursively
calling itself with substitution of the owners to the superclass if the
field is not defined in the class.

The function mBody returns the body of a given method in a
class. It also calls itself recursively if the method is not defined in
the given class.

The function mType returns the type and mutability parameter
of a given method, again with a recursive call to itself.

The function override succeeds if the given method name,
mutability parameter and type signature is valid to overwrite the
method of a superclass.

In Figure 10 the less than or equal relation and the mutability
function I are defined. The former was already mentioned, and de-
scribes the ordering that immutable is less than mutable and any
parameter m is less than or equal to itself. The function I defines
what the mutability of a given class is, extracting the mutability
parameter.

In Figure 11 the viewpoint adaptation is defined. If the mutabil-
ity of a type N is immutable, the viewpoint adaptation results in an
immutable type. If the mutability of N is mutable, the result is the
mutability parameter of the actual type.

5 2010/8/2

fields(Object) = ∅

class Cm<o→[bl bu]> extends N {U f; W} fields(N) = g

fields(C) = g + f

class Cm<o→[bl bu]> extends N {U f; W}
fType(fi, C<a>) = [a/o]Ui

class Cm<o→[bl bu]> extends N {U f; W} fi 6∈ f
fType(fi, C<a>) = fType(fi, [a/o]N)

class Cm<o→[bl bu]> {U f; W} <o′ →[b′l b′u]> T mn (T x) {return e;} ∈ W

mBody(m<a′>, C<a>) = (x; [a/o, a′/o′]e)

class Cm<o→[bl bu]> extends N {U f; W} m 6∈ W

mBody(m<a′>, C<a>) = mBody(m<a′>, [a/o]N)

class Cm<o→[bl bu]> {U f; W} <o′ →[b′l b′u]> T mn (T x) {return e;} ∈ W

mType(m<a′>, C<a>) = ([a/o, a′/o′]<o′ →[b′l b′u]>(T→ T); n)

class Cm<o→[bl bu]> extends N {U f; W} mn 6∈ W

mType(m<a′>, C<a>) = mType(m<a′>, [a/o]N)

mType(m<o>, C<a′>) is undefined

override(m, n, C<a′>, <o→[bl bu]>T→ T0)

mType(m<o>, C<a′>) = (T→ T0; n) n′ ≤n
override(m, n′, C<a′>, <o→[bl bu]>T→ T0)

Figure 9. Field and method lookup functions for FJ I O.

I(Cm<a>) = m

immutable ≤ mutable

m ≤ m

Figure 10. Mutability functions and relations for FJ I O.

I(N) = immutable

N B Cm<a> = Cimmutable<a>

I(N) = mutable

N B Cm<a> = Cm<a>

Figure 11. Viewpoint adaptation for FJ I O.

The typing rules are shown in Figure 12. The type of a field
access is the viewpoint adapted field type after substitution of this
for γ in type T (T-FIELD).

The typing rule for field assignment T-ASSIGN states that a field
assignment is possible if the viewpoint adapted field type is mutable
and the expression of the new value is of the given type. Then, this
is substituted for γ in type T’.

The rule T-NEW states that a newly created instance of a class
is of this class if the class is well-defined.

The rule T-SUB is the subsumption rule, if an expression e is of
type T’, a subtype of T, e can be used where an object of type T is
expected.

The invocation rule T-INVK checks that mutability parameter of
the method matches, checks for the ownership bounds, and returns
the viewpoint adapted, substituted (again this for γ) type T.

The rule T-CLASS defines that if the owners are well-formed,
and the method definition, fields and superclass are ok, the class
itself is well-typed.

The rule T-METHOD shows what preconditions are needed in
order to have a well-typed method, namely the type of the body
expression has to be the defined return type, the helper function
override must be valid, and the mutability parameter must be less
or equal than the declared mutability of the class.

5. Proofs
5.1 Type Soundness
Type soundness guarantees that the types of variables accurately
reflect their contents, including ownership information. Soundness
is shown by proving progress and preservation (subject reduction).

6 2010/8/2

∆; Γ ` γ : N
fType(f, N) = T

∆; Γ ` γ.f : NB [γ/this]T
(T-FIELD)

∆; Γ ` γ : N
fType(f, N) = T

T′ = NBT
I(T′) = mutable

∆; Γ ` e : T′

∆; Γ ` γ.f = e : [γ/this]T′

(T-ASSIGN)

∆; Γ ` Cm<a> OK

∆; Γ ` new Cm<a> : Cm<a>
(T-NEW)

∆; Γ ` e : T′ ∆; Γ ` T′ <: T ∆; Γ ` T OK

∆; Γ ` e : T
(T-SUB)

∆; Γ ` γ : N ∆; Γ ` e : NBT ∆; Γ ` a OK mType(m<a>, N) = (<o→[bl bu]>T→T; n)
I(N) = n ∆; Γ ` a � bu ∆; Γ ` bl � a

∆; Γ ` γ.<a>m(e) : NB[γ/this]T
(T-INVK)

this:Cm<o> ` o→[bl bu] OK o→[bl bu]; this:Cm<o> ` W, T, N OK

` class Cm<o→[bl bu]> extends N {T f; W} OK
(T-CLASS)

∆′ = ∆, o→[bl bu] Γ = this:Cn′<o′>, x:T ∆; this:Cn′<o′> ` o→[bl bu] OK

∆′; this:Cn′<o′> ` T, T OK ∆′; Γ ` e : T override(m, n′, N, <o→[bl bu]>T→ T) n′ ≤n
∆; this:Cn<o

′> ` <o→[bl bu]> T mn′ (T x) {return e;} OK
(T-METHOD)

Figure 12. FJ I O expression and class typing rules.

Progress For any H, e, T if (a) H ` e:T and (b) H OK then
either H′,e′ exists such that (c) e;H e′;H′ or (d) there exists
a v, such that e = v.

The proof of the progress theorem is done by structural induc-
tion on the derivation of ∅;H ` e:T with a case analysis on the last
step.

Please see the appendix for the detailed proof and the additional
lemma required.

Subject reduction For any ∆, H, H′, e, e′, T if (a) ∆;H
` e:T and (b) e;H e′;H′ and (c) ∆;H `e OKand (d) ∅;H `
∆ OKand (e) ∆ ` H OKand (f) e′ 6= err then (g) ∆;H′ ` e′:T
and (h) ∆;H′ `e′ OKand (i) ∆ ` H′ OK.

The proof of the subject reduction theorem is done by structural
induction on the derivation of e;H e′;H′ with a case analysis
on the last step.

Please see the appendix for the detailed proof and the additional
lemmas required.

5.2 Immutability Invariant
Let E[·] be an execution context, which describe field updates and
method calls present within an expression:

E[·] ::= [·] | E[·].f | E[·].f = e | e.f = E[·]
| E[·].m(e) | e.m(E[·])

e′;H e′′;H’ e′′ 6= err

E[ι.f = e′];H E[ι.f = e′′];H’
(RC-EXECCON)

INVARIANT: If e;H e′;H′ and H(ι) 6= H′(ι) with ι →
{Rm;f→v′:R′} then ∀ι where H(ι) 6= H′(ι) there exists f,v and
E[·] such that e = E[ι.f := v] and I(Rm) = I(R′) = mutable

Proof sketch: The only mutation is field assignment. The T-
ASSIGN rule can only be applied if the viewpoint adapted type of
the field is mutable.

Helper lemma: IMMUTABLE-OBJECT-HAS-IMMUTABLE-FIELDS:
e : T ;H ∗ v;H′, if I(T)=immutable, all fields in v are
immutable.
Proof: viewpoint adaptation definition

5.3 Ownership Invariant

owner(Cm<a>) = a0

INVARIANT: For anyH`e:T, owner(T) = a. Given e;H ∗ ι;H′
with ι→{Rm<r>; ...}, let the owner of ι be owner(Rm<r>) =
r. ThenH`r � a.

Proof sketch: Show that for all reduction rules if e reduces to
e′, the owner is preserved. The only interesting case is T-ASSIGN,
and the owner of the new value has to be inside of the field type.

6. Discussion and Related Work
Ever since the Universes type system [14] that unified readonly
references by introducing owners-as-modifiers there have been
attempts to unify ownership and immutability [13]. The benefits
of adding immutability to ownership were clear as owners-as-
modifiers allow more flexible language expressions than owners-
as-dominators.

The benefits of adding ownership to immutability however were
only recently discovered [12, 19]. Frozen Objects demonstrated
how immutable objects can be constructed even beyond the con-
structor allowing immutable cyclic data structures as long as a ver-
ification system is present to make sure safety [12]. Ownership and
Immutability for Generic Java (OIGJ) [19] demonstrated how to
provide safe immutably object construction of immutable cyclic
data structures in a simple type-checkable fashion without the need
for more complex program verification set up.

Other mergers included just immutable objects and deep owner-
ship [10] but without readonly references and class-wide ownership
and all three kinds of immutability [16] but with limited expressiv-
ity. In fact, over the past several years most people came to expect
any ownership system to have immutability support and vice-versa.
Modern languages such as X10 [15] support both ownership and
immutability as the only way forward.

7. Conclusion
In this paper, our goal was simple: to prove that adding immutabil-
ity to a prescriptive ownership discipline will safely allow limited

7 2010/8/2

ownership variance. We have described the language we set up that
incorporates three kinds of immutability in addition to prescrip-
tive ownership and provided all the theorems and proof outlines re-
quired. We hope that this workshop paper will provide a small but
useful contribution to the foundations of object-oriented languages
community.

References
[1] Jonathan Aldrich and Craig Chambers. Ownership Domains: Separat-

ing Aliasing Policy from Mechanism. In ECOOP, volume 3086, pages
1–25, Oslo, Norway, June 2004. Springer-Verlag.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias
Annotations for Program Understanding. In OOPSLA, pages 311–330,
Seattle, WA, USA, November 2002. ACM Press.

[3] Adrian Birka and Michael D. Ernst. A practical type system and
language for reference immutability. In OOPSLA, pages 35–49, 2004.

[4] Nicholas Cameron, Sophia Drossopoulou, James Noble, and Matthew
Smith. Multiple ownership. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOP-
SLA), pages 441–460, New York, NY, USA, 2007. ACM.

[5] David Clarke, John Potter, and James Noble. Ownership Types for
Flexible Alias Protection. In OOPSLA, pages 48–64, Vancouver,
Canada, October 1998. ACM Press.

[6] David Clarke and Tobias Wrigstad. External Uniqueness is Unique
Enough. In ECOOP, volume 2473 of (LNCS), pages 176–200, Darm-
stadt, Germany, July 2003. Springer-Verlag.

[7] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic uni-
verse types. In ECOOP, 2007.

[8] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic uni-
verse types. International Workshop on Foundations of Object Ori-
ented Languages (FOOL) 2007, pages 1–13, Jan 2007.

[9] Werner Dietl and Peter Müller. Universes: Lightweight ownership for
jml. Journal of Object Technology, 4(8):5–32, Sep 2005.

[10] Christian Haack, Erik Poll, Jan Schäfer, and Aleksy Schubert. Im-
mutable objects for a java-like language. In ESOP, pages 347–362,
March 2007.

[11] Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Feather-
weight java: A minimal core calculus for java and gj. ACM Trans.
Program. Lang. Syst., 23(3):396—450, Jan 2001.

[12] K. Rustan M. Leino, Peter Müller, and Angela Wallenburg. Flexible
immutability with frozen objects. In VSTTE, pages 192–208, October
2008.

[13] Paley Li, Alex Potanin, James Noble, and Lindsay Groves. Towars
unifying ownership and immutability. In (IWACO), 2008.

[14] P. Müller and A. Poetzsh-Heffter. Programming Languages and Fun-
damentals of Programming. Technical report, Fernuniversität Hagen,
2001. Poetzsh-Heffter, A. and Meyer, J. (editors).

[15] Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian
Grothoff. Constrained types for object-oriented languages. In OOP-
SLA, pages 457–474. ACM Press, October 2008.

[16] Johan Östlund, Tobias Wrigstad, Dave Clarke, and Beatrice Åkerblom.
Ownership, uniqueness and immutability. In TOOLS Europe 2008,
2008.

[17] Matthew Tschantz and Michael Ernst. Javari: adding reference im-
mutability to java. OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, Oct 2005.

[18] Yoav Zibin, Alex Potanin, Shay Artzi, Adam Kiezun, and Michael D.
Ernst. Object and reference immutability using Java generics. In
Foundations of Software Engineering, 2007.

[19] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D.
Ernst. Ownership and immutability in generic java. In OOPSLA,
Reno, Nevada, USA, October 2010. ACM Press.

Appendix: Rules and Proofs Omitted from the
Paper
Progress For any H, e, T if (a) H ` e:T and (b) H OK then
either H′,e′ exists such that (c) e;H e′;H′ or (d) there exists
a v, such that e = v.

The detailed proof of the progress theorem:

• T-FIELD

1. e = γ.f by def T-FIELD

2. γ:N by premise T-FIELD

3. γ = ι ∈ H by CLOSED-LEMMA, 2

4. T<:NBT byRHD-SUPERTYPE, S-MUTABLE

5. done by 1, 3, R-FIELD

• T-ASSIGN

1. e = γ.f = e′′ by def T-ASSIGN

2. γ:N by premise T-ASSIGN

3. T′mutable = NBT by premise T-ASSIGN

4. e′′:T′ by premise T-ASSIGN, def of B

5. γ = ι ∈ H by CLOSED-LEMMA, 2

6. e′′,H e′′′,H′ or ∃v : e′ = v by 3, b, induction hyp

7. case analysis on e′′:

8. e′′,H e′′′,H′ by 1, 4, RC-ASSIGN or RC-ASSIGN-
ERR

9. ∃v : e′ = v by 1, 4, e′′ = v, R-ASSIGN

• T-NEW

1. e = new Cm<a> by def T-NEW

2. H ` Cm<a> OK by premise T-NEW

3. class Cm<o→[bl bu]> by 2, F-CLASS

4. a OK by 2, F-CLASS

5. [a/o] bl � a by 2, F-CLASS

6. a � [a/o] bu by 2, F-CLASS

7. a = r by 4, syntax of a

8. fields(Cm) = f by 3, def fields

9. done by 1, 7, 8, R-NEW

• T-SUB

1. e : T by def T-SUB

2. e : T’ by premise T-SUB

3. T’ <: T by premise T-SUB

4. done by 1, 3
• T-INVK

1. e = γ.<a>mn(e) by def T-INVK

2. γ:N by premise T-INVK

3. e:N B T by premise T-INVK

4. a OK by premise T-INVK

5. a � bu by premise T-INVK

6. Bl � a by premise T-INVK

7. mType defined by premise T-INVK

8. γ = ι ∈ dom(H) by 2, CLOSED-LEMMA

9. a = r by 2, def syntax r

8 2010/8/2

10. ∀ ei ∈ e:ei,H e′i,H′ or ∃ v:ei = v by 3, b, in-
duction hyp

11. case analysis on e:

12. case ∃ ei ∈ e:ei,H e′i,H′

13. done by 1, 8, 9, RC-INVK or RC-INVK-ERR

14. case ∀ ei ∈ e:∃ v:ei = v

15. mBody defined by 7, def mBody, mType

16. done by 1, 8, 9, e′′ = v, R-ASSIGN

A required lemma in the proof is as follows:

• CLOSED-LEMMA Well-typed expressions are closed:

if ∆; Γ ` e:T then:

∀γ ∈ fvγ(e) : γ ∈ dom(Γ)

∀o ∈ fvo(e) : o ∈ dom(∆)

• RHD-SUPERTYPE: if ∆; Γ `N, T then ∀N, T:T<:NBT

Subject reduction For any ∆, H, H′, e, e′, T if (a) ∆;H
` e:T and (b) e;H e′;H′ and (c) ∆;H `e OKand (d) ∅;H `
∆ OKand (e) ∆ ` H OKand (f) e′ 6= err then (g) ∆;H′ ` e′:T
and (h) ∆;H′ `e′ OKand (i) ∆ ` H′ OK.

The detailed proof of the subject reduction theorem:

• R-FIELD-NULL, R-ASSIGN-NULL, R-INVK-NULL, RC-ASSIGN-
ERR, RC-INVK-ERR

1. N/A by e
• R-FIELD

1. e = ι.fi by def R-FIELD

2. e′ = vi by def R-FIELD

3. H′ =Hby def R-FIELD

4. H(ι) = {R; f→v} by premise R-FIELD

5. ∆;H` ι:N by a, 1, INVERSION-LEMMA (FIELD ACCESS)

6. fType(fi, N) = T′ by a, 1, INVERSION-LEMMA (FIELD
ACCESS)

7. ∆;H`T<:T′ by a, 1, INVERSION-LEMMA (FIELD ACCESS)

8. ∆;H`R<:N by 5, INVERSION-LEMMA (ADDRESS), 4

9. ∆ `H OKby e

10. ∆;H` vi:T′ by 4, 6, 8, 9, def F-HEAP

11. ∆;H`T OKby RUNTIME-TYPE-CHECKING-GIVES-WELL-
FORMED-TYPES-LEMMA, a, d, 9

12. ∆;H`vi:T by 10, 11, 7, T-SUB

13. ∆;H′`e′:T by 12, 2, 3

14. ∀ι ∈fv(e′):ι ∈dom(H′) by 13, CLOSED-LEMMA

15. ∆;H′`e′ OK by 3, 9, 14

16. ∆ ` H′ OKby 3, 9

17. done by 13, 15, 16
• R-ASSIGN

1. e = ι.fi = v by def R-ASSIGN

2. e′ = v by def R-ASSIGN

3. H(ι) = {R; f v} by premise R-ASSIGN

4. H′ = H[ι 7→ {R; f v[fi 7→v]}] by premise R-ASSIGN

5. ∆;H`ι:N by a, 1, INVERSION-LEMMA (FIELD ASSIGN-
MENT)

6. ftype(fi, N) = T′ by a, 1, INVERSION-LEMMA (FIELD AS-
SIGNMENT)

7. ∆;H` v:T′ by a, 1, INVERSION-LEMMA (FIELD ASSIGN-
MENT)

8. ∆;H` T′<:T by a, 1, INVERSION-LEMMA (FIELD ASSIGN-
MENT)

9. ∆ `H OKby e

10. ∆;H`T OKby a, d, 9,RUNTIME-TYPE-CHECKING-GIVES-
WELL-FORMED-TYPES-LEMMA

11. ∆;H`v:T by 7, 8, 10

12. ∆;H′`v:T by 11, REDUCTION-PRESERVES-HEAP-LEMMA

13. assume that v is defined

14. v ∈ H′ by 13, 12, WELL-TYPED-VALUES-HAVE-ADDRESSES-
LEMMA

15. assume v 6= null is defined, else goto 19

16. ∆;H `R<:N by 3, 5, INVERSION-LEMMA (ADDRESS)

17. ∆;H `owner(v) = owner(T′) by 7, def OWNER

18. ∆;H′ `owner(v) = owner(T) by 7, 8, 12, 17, def OWNER

19. ∆ `H′ OKby 9, 4, 6, 7, 13, 15 or 18, def F-HEAP

20. ∀ι ∈ fv(e′) : ι ∈ dom(H′) by 12, CLOSED-LEMMA

21. ∆;H′ `e′ OKby 19, 20

22. done by 21, 12
• R-NEW

1. e = new Cm<r> by def R-NEW

2. e′ = ι by def R-NEW

3. H(ι) undefined by premise R-NEW

4. fields(C) = f by premise R-NEW

5. H′ = H,ι Cm<r>;f null by premise R-NEW

6. ∆;H `C<r><:T by 1, a, INVERSION-LEMMA (NEW)

7. ∆;H `C<r> OKby 1, a, INVERSION-LEMMA (NEW)

8. ∆;H′ ` ι:C<r> by 5

9. ∆;H′ `C<r><:T by 6, 5, SUBTYPE-WEAKENING-LEMMA

10. ∆ ` H OKby e

11. ∆;H `T OKby a, d, 10, RUNTIME-TYPE-CHECKING-
GIVES-WELL-FORMED-TYPES-LEMMA

12. ∆;H′ ` ι:T by 8, 9, 11, T-SUB

13. let fType(f, C<r>) = U

14. ∆;H `U OKby 13, 7, FTYPE-WELL-FORMED-LEMMA

15. ∆;H `null:U by 14, T-NULL

16. ∆;` ι →{C<r>; f→null} OKby 10, 7, 13, 15, def T-
HEAP

17. ∆ `H′ OKby 16, 5

18. ∀ι ∈ fv(e′) : ι ∈dom(H′) by 2, 5

19. ∆;H′ `e′ OK by 18, 17

20. done by 12, 19
• R-INVK

1. e = ι.<r>m(v) by def R-INVK

2. e′ = [v/x]e0 by def R-INVK

3. H′ = H by def R-INVK

9 2010/8/2

4. H(ι) = {R;...} by premise R-INVK

5. mBody(m<r>,R) = x;e0 by premise R-INVK

6. ∆;H ` ι:N by 1, a, INVERSION-LEMMA (INVOKE)

7. mType(m,N)=(T→T;n) by 1, a, INVERSION-LEMMA (IN-
VOKE)

8. ∆;H `e:T by 1, a, INVERSION-LEMMA (INVOKE)

9. ∆;H `r OKby 1, a, INVERSION-LEMMA (INVOKE)

10. ∆;H `U OKby 1, a, INVERSION-LEMMA (INVOKE)

11. ∆;H `T′<:T by 1, a, INVERSION-LEMMA (INVOKE)

12. ∆;H `R<:N by 4, 6, INVERSION-LEMMA (ADDRESS)

13. ∆ ` H OKby e

14. ∆;Hx:T`e0:T′ by 5, 7, 6, 9, 10, d, 13, BODY-HAS-
RETURN-TYPE-LEMMA

15. ∆;H `[v/x]e0:[v/x]T′ by 14, 6, 13, d, S-REFLEX,
VALUE-SUBSTITUTION-PRESERVES-TYPING-LEMMA

16. ∆;H `T′ OKby 14, 11, RUNTIME-TYPE-CHECKING-GIVES-
WELL-FORMED-TYPES-LEMMA

17. ∆;H `[v/x]e0:T′ by 15, 16

18. ∆;H `T OKby a, d, 13, RUNTIME-TYPE-CHECKING-
GIVES-WELL-FORMED-TYPES-LEMMA

19. ∆;H `[v/x]e0:T by 17, 11, 18, T-SUB

20. ∆;H′ `e′:T by 2, 3, 19

21. ∀ι ∈fv(v):ι ∈dom(H) by 1, c

22. ∀ι ∈fv(e0):ι ∈dom(H),x by 14, CLOSED-LEMMA

23. ∀ι ∈fv([v/x]e0):ι ∈dom(H) by 21, 22

24. ∀ι ∈fv(e′):ι ∈dom(H) by 23, 2

25. ∆;H′ `e′ OKby 3, 13, 24

26. done by 20, 25
• RC-ASSIGN

1. e = ι.f = e′′ by def RC-ASSIGN

2. e′ = ι.f = e′′′ by def RC-ASSIGN

3. e′′;H e′′′;H′ by premise RC-ASSIGN

4. e′′′ 6= err by premise RC-ASSIGN

5. ∆H ` ι:N by 1, a, INVERSION-LEMMA (FIELD ASSIGN-
MENT)

6. fType(f, N) = U by 1, a, INVERSIO-LEMMA (FIELD AS-
SIGNMENT)

7. ∆;H `e′′:U by 1, a, INVERSION-LEMMA (FIELD ASSIGN-
MENT)

8. ∆;H `U<:T by 1, a, INVERSION-LEMMA (FIELD ASSIGN-
MENT)

9. ∆;H `e” OKby c, 1, def F-CONFIG

10. ∆;H′ `e′′′:U by 7, 3, 9, d, 4, induction hyp

11. ∆;H′ `e’’’ OKby 7, 3, 9, d, 4, induction hyp

12. ∆;H′ ` γ.f=e′′′:U by 5, 6, 10, T-ASSIGN

13. ∆ ` H′ OKby 11, def F-CONFIG

14. fv(e′′′)⊆dom(H′) by 11, def F-CONFIG

15. ∆;H′ `T OKby a, d, 13, RUNTIME-TYPE-CHECKING-
GIVES-WELL-FORMED-TYPES-LEMMA

16. ∆;H′ ` γ.f=e′′′:T by 12, 8, 15, T-SUB

17. ∆;H `e′:T by 16, 2

18. fv(e′) ⊆ dom(H′) by c, 1, 2, 14

19. ∆;H′ `e′ OKby 13, 18, F-CONFIG

20. done by 17, 19
• RC-INVK

1. e = ι.<r>m(v, ei, e) by def RC-INVK

2. e′ = ι.<r>m(v, e′i, e) by def RC-INVK

3. ei;H ei’;H′ by premise RC-INVK

4. e′i 6= err by premise RC-INVK

5. ∆;H ` ι:N by 1, a, INVERSION-LEMMA (INVOKE)

6. mType(m, N)=(U→U;n) by 1, a, INVERSION-LEMMA
(INVOKE)

7. ∆;H `(v,ei,e:U) by 1, a, INVERSION-LEMMA (IN-
VOKE)

8. ∆;H `r OKby 1, a, INVERSION-LEMMA (INVOKE)

9. ∆;H `T OKby 1, a, INVERSION-LEMMA (INVOKE)

10. ∆;H `U<:T by 1, a, INVERSION-LEMMA (INVOKE)

11. ∆;H `ei OKby d, 1, def F-CONFIG

12. ∆;H′ `e′i:Ui by 7, 3, 11, d, 4, induction hyp

13. ∆;H′ `e′i OKby 7, 3, 11, d, 4, induction hyp

14. ∆;H′ ` ι.m<r>(v, e′i, e):U by 5, 6, 7, 12, 8, 9, T-INVK

15. ∆;H′ `e′:U by 14, 2

16. ∆ ` H′ OKby 13, def F-CONFIG

17. fv(e′i) ⊆ dom(H′) by 13, def F-CONFIG

18. ∆;H′ `T OKby a, d, 16, RUNTIME-TYPE-CHECKING-
GIVES-WELL-FORMED-TYPES-LEMMA

19. ∆;H′ `e′:T by 15, 10, 18, T-SUB

20. fv(e′) ⊆ dom(H′) by c, 1, 2, 17

21. ∆;H′ `e′ OKby 16, 20, F-CONFIG

22. done by 19, 21

The required lemmas in the proof are as follows:

• INVERSION-LEMMA (FIELD ACCESS):

If ∆; Γ ` γ.f:T then

∆; Γ ` γ:N and

∆; Γ `fType(f, N)<:T

• INVERSION-LEMMA (ADDRESS):

If ∆; Γ ` ι:T then

∆; Γ ` Γ(ι)<:T

• INVERSION-LEMMA (FIELD ASSIGNMENT)

If ∆; Γ ` γ.f = e:T then

∆; Γ ` γ:N
fType(f, N) = U

∆; Γ `e:U
∆; Γ `U<:T

• RUNTIME-TYPE-CHECKING-GIVES-WELL-FORMED-TYPES-
LEMMA

If ∆;H `e:T and

10 2010/8/2

∆ ` H OKand

∅ ` ∆ OKthen

∆;H `T OK

• REDUCTION-PRESERVES-HEAP-LEMMA

if e;H e′;H′ and

...H... ` ... and

e′ 6=err then

...H′... ` ...
• WELL-TYPED-VALUES-HAVE-ADDRESSES-LEMMA

If ∆; Γ `v:T and

v 6= null, then

v ∈ dom(Γ)

• INVERSION-LEMMA (NEW)

If ∆; Γ `new C<a>:T then

∆; Γ `C<a><:T and

∆; Γ `C<a> OK

• SUBTYPE-WEAKENING-LEMMA

If ∆,∆′; Γ,Γ′ ` T <: T ′ and

dom(∆,∆′)∩dom(∆′′)=∅ and

dom(Γ,Γ′)∩dom(Γ′′)=∅ then

∆,∆′′,∆′; Γ,Γ′′,Γ ` T <: T ′

• FTYPE-WELL-FORMED-LEMMA

If fType(f, C<a>) = T and

∆;H `C<a> OKand

∆;H ` ι:C<a> and

∅;` ∆ OKand

∆ ` H OKthen

∆;H `T OK

• INVERSION-LEMMA (INVOKE)

If ∆; Γ ` γ.<a>m(e):T then

∆; Γ ` γ:N and

mType(m,N)=(T→T;n) and

∆; Γ `e:T and

∆; Γ `a OKand

∆; Γ `U OKand

∆; Γ `T′<:T
• BODY-HAS-RETURN-TYPE-LEMMA

If mBody(m, R) = (x;e) and

mType(m, R) = (T→T;n) and

∆ ` H OKand

H ` ∆ OKthen

∆;H,x:T` e:T

• VALUE-SUBSTITUTION-PRESERVES-TYPING-LEMMA

If ∆,∆′; Γ,x:U,Γ′ `e:T and

∆; Γ `v:U′ and

∆; Γ `U′<:U and

∆ ` Γ OKand

x 6∈ fv(∆) then

∆,[v/x]∆′;Γ,[v/x]Γ′ `[v/x]e:[v/x]T

11 2010/8/2

