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Abstract—Inferring human activity is often achieved using
specialized sensors and beacons such as accelerometers, pe-
dometers and motion sensors on wireless nodes. These sensor
nodes compose a Wireless Sensor Network in a coordinated way.
However, these sensors are too expensive for large deployment,
which affects performance. In addition, the transmission accu-
racy of wireless communications suffers from radio irregularities
caused by obstacles such as human bodies in the environment.
The human body selectively reflects, diffracts and scatters the
radio signal which affects the received signal strength. This
paper presents an approach to detecting human activity using
fluctuations in the received signal strength. These fluctuations
are detected using an overcomplete dictionary based pattern
recognition algorithm. Performance results are presented which
show that the proposed system has an accuracy of 86% in
detecting human activity. Moreover, the detection algorithm
can be implemented in software without modifying the existing
infrastructure. As result, this is a promising technology for
security and surveillance applications.

Index Terms—Wireless Sensor Network; intrusion detection;
inferring human activity

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of distributed
wireless sensor nodes that operate in a coordinated way to
monitor physical or environmental conditions [1]. Each of
these nodes, often referred to as “motes”, has processing and
wireless transmission capabilities, although these tend to be
limited. In addition, the wireless nodes contain specialised sen-
sors which are able to monitor a variety of ambient condition
such as temperature, pressure and humidity. The features of
WSNs such as low-cost and low-power with multifunctional
sensing capabilities [1] have opened up new applications in
many areas such as health, military, and security.

Motes typically have resource constraints such as finite
on-board battery power, limited communications bandwidth,
and limited memory [2]. However, problems such as limited
battery capacity can be alleviated through the deployment of
a large number of wireless sensors for redundancy. A problem
which cannot easily be resolved is radio irregularity [3]. Radio
irregularity is determined by the device and the media [2].
Device properties include antenna parameters, transmission
power, and receiver sensitivity, while media properties include
background noise and obstacles in the propagation channel.

Two components of signal propagation considered to be
key causes of radio irregularity are path loss and transmission
power [2]. The radio signal may be reflected, diffracted and/or
scattered in the channel [4]. The impact of radio irregularity
depends on the obstacles and the wireless signals transmitted.
The human body selectively reflects, diffracts, and scatters
radio signals such that the radio irregularity varies over time.
Consequently, the received signal strength at the receiver fluc-
tuates. It has been observed [3] that there are certain fluctuation
patterns associated with the presence of human activity. By
considering these patterns, an overcomplete dictionary based
pattern recognition technique [5] is presented in this paper
which can improve activity detection accuracy.

In the next section, we briefly discuss related work on
motion detection using receiving signal strength in WSNs. In
Section III, we describe the characteristics of wireless signal
strength in the presence of human activity. A novel detection
algorithm using overcomplete dictionary based pattern recog-
nition for inferring human activity is proposed in Section IV.
The detection performance is evaluated in Section V, and some
conclusions are given in Section VI.

II. RELATED WORK

Precise motion inference can be achieved by specialised sen-
sors and beacons such as accelerometers, pedometers and mo-
tion sensors [6]. However, large deployment of these devices is
impractical due to their high cost and obtrusive characteristics.
This has motivated the development of alternative motion de-
tection techniques suitable for current network infrastructures
without hardware alterations. Although small-scale fading and
shadowing can affect the received signal strength, it should be
stable while the nodes are static. In [7], the characteristics
of the received signal strength were exploited for various
applications and validated using the Mica2 mote by Crossbow.

Wireless sensing is also possible using the existing wireless
infrastructure such as WiFi and GSM. In [8], a novel motion
detection algorithm was proposed called Spectrally Spread
Motion Detection (SpecSMD). This algorithm is able to clas-
sify user motion as either ’moving’ or ’still’ by examining
the characteristics of the Received Signal Strength Indicator
(RSSI) of a WiFi signal. Users must therefore carry a WiFi



device. The algorithm was shown to achieve an accuracy
of 94%. A neural network approach has also been used to
distinguish user motion using fluctuations in a GSM signal [9].

In this paper, we propose motion detection by distinguishing
the RSSI pattern using an overcomplete dictionary based
pattern recognition algorithm. This algorithm is a software
solution which can be used with existing wireless commu-
nication devices for intrusion detection without employing
additional hardware.

III. CHARACTERISTICS OF THE WIRELESS SIGNAL
STRENGTH

Wireless signals may be reflected, diffracted and/or scat-
tered during transmission. According to [3], there are certain
patterns associated with the existence of a moving object in
an environment. Two Crossbow R⃝ TelosB motes were placed
4 m apart at a height of 1.5 m. One mote transmitted
packets to the other mote with a 0.25 second inter-packet
time interval. The RSSI fluctuation patterns were found to be
consistent regardless of the environmental factors or absolute
RSSI values [3]. For a given packet pi, the RSSI fluctuation
were calculated as F(pi) = S(pi)−S(pi−1). For example, the
sequence of RSSI values 1, 2, 4, 5, 8, 7, 6 produces the RSSI
fluctuation values 0, +1, +2, +1, +3, -1, -1. The study reported
consistent but different patterns of RSSI fluctuations with and
without movement. An example of these results is shown in
Fig. 1. The RSSI values have less fluctuation when there is
no movement in the environment, and a wider distribution in
the presence of human movement.

IV. INFERRING HUMAN ACTIVITY

In this section, we present a movement detection system
using an overcomplete dictionary based pattern recognition
algorithm. This detection algorithm has been employed in
ultra-wideband communications systems [5]. A flowchart of
the proposed system is shown in Fig. 2(a). It begins with
the measured RSSI readings and calculates the frequency of
RSSI fluctuations over a window of N packets. The overcom-
plete dictionary based pattern recognition algorithm takes this
frequency data as input. The pattern recognition algorithm is
shown in Fig. 2(b).

The overcompleted dictionary DN consists of two matrices

DN = [I H] , (1)

where
I is the spike-like dictionary with size of 16 x 16, and

H is the Walsh noise dictionary with size of 16 x 16.

The algorithm decomposes the RSSI frequency data vector
y with dictionary DN using l1 norm minimisation [10][11] to
obtain the solution

x =

[
γI
γH

]
(2)

where
y = DNx = IγI +HγH, (3)

The RSSI fluctuations patterns shown in Fig. 1 were decom-
posed with dictionary DN using l1 norm minimisation. The
results with and without movement are shown in the Fig. 3.
Atom indices 1 to 16 correspond to the spike-like dictionary
and 17 to 32 to the Walsh dictionary. Fig. 3 clearly shows
that the maximum coefficient lies between atom 1 to 16 when
there is no movement, and between 17 to 32 when movement
occurs. movement pattern is decomposed. Thus the decision
rule is no movement when the largest peak is located among
atoms 1 to 16, and movement otherwise.
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Fig. 1. RSSI fluctuation patterns
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Fig. 2. (a) Flowchart of the proposed movement detection system.
(b) The overcomplete dictionary based pattern recognition



V. DETECTION PERFORMANCE EVALUATION

In [3], a series of experiments was performed in different
locations to evaluate their proposed algorithm. The experi-
ments were conducted in three different meeting rooms of
approximate area 6 m × 4 m. The motes were placed at a
height of 1.5 m and spaced 4 m apart. Over a 20 minute period,
a person walked between the motes every two minutes. RSSI
samples were obtained for every received packet. Therefore,
the sampling rate is the inter-packet interval of 0.25 sec, so
that 100 samples implies a duration of 25 sec.

A. Detection results

The data from [3] was used with the proposed detection
algorithm. The results using the data collected in Room 1
with window size N = 100 samples are shown in Fig. 4.
The proposed algorithm was able to detect every movement
that occurred in the environment, but the accuracy of the
movement duration was low. Note that there were no false
positive detections. The inaccuracy in the inferred movement
durations is due in part to the window size. Therefore, the
algorithm was repeated with the window size reduced to
N = 50 samples. The results given in Fig. 5 show that reducing
the window size improves the accuracy of both the inferred
movement durations and detection latency. Considering that
the RSSI fluctuation statistics were gathered for a window
of size 100 samples, the pattern of the resulting statistics is
not obvious due to this large window size. Non-movement
and movement patterns might be mixed over a large window
size. For instance, there is a missed detection at sample
index of 1300 when N is set to 100 samples. However, the
detection result is correct when the window size is reduced to
50 samples. With N = 100 samples, the frequency of RSSI
fluctuation is calculated with samples from 1201 to 1300
where 1201 to 1229 has non-movement. Therefore, the RSSI
fluctuations have a small spike between -1 to 1 as shown
in Fig. 6. This results in an incorrect detection outcome.
A smaller window size can improved this performance both
timing and detection duration.

B. Optimal Window Size

The effect of different window sizes on the detection error is
now considered. We aim to find an optimal detection window
size that minimise the detection error. The detection algorithm
was repeated with window sizes from N = 10 to 150 samples.
The detection error rate was calculated by dividing the number
of differences between the actual and detected movement
results, by the total number of samples. Fig. 7 shows that the
detection error rate for Room 1 is lowest when the window
size is N = 40 samples for Room 1. The detection error rate
is high when the window size is small because there are too
few samples to effectively detect the pattern. As the window
size increases beyond 40 samples, the detection error rate
increases due to the reason discussed previously. The detection
algorithm can produce detection error due to the mixture of
movement and non-movement patterns within a large window
size. The detection results for Rooms 2 and 3 are shown in

Fig. 8 and 9. The best window sizes are 40 and 55 samples
for Rooms 2 and 3, respectively. However, the overall error
rate of Room 2 is extremely high compared to the results
of Room 1 and 3. This issue needs to be further studied by
performing more experiments. We observed that a window size
of 45 samples is suitable for every environment. The detection
results of Room 1 and 3 are shown in Fig. 10 to 12 with
window size equals to 45 samples. The detection algorithm
achieves an overall accuracy of 86% with no false positive
detections.

VI. CONCLUSIONS

In this paper, the feasibility of using wireless sensor motes
for motion detection has been demonstrated. It was shown
that the absolute received signal strength varies while the
fluctuations remain stable regardless of the environment. These
fluctuations can be used to detect human motion in the wireless
environment. It was also shown that the detection accuracy
can be improved by using an overcomplete dictionary based
pattern recognition algorithm. An 86% detection rate was
achieved with no false positive detections. This approach to
human activity detection can be implemented with standard
communication equipment to provide intrusion detection. If
the detection information obtained is insufficient, the proposed
algorithm can be used in conjunction with a security system.
For example, it can be employed to turn on surveillance
cameras when a moving object is detected in a restricted
area. This is a promising technology for intrusion detection
because it does not need additional hardware, and thus can be
considered as an option for future security applications.
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Fig. 3. The dictionary based decomposition results.
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Fig. 4. Detection results for room 1 (N=100).
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Fig. 5. Detection results for room 1 (N=50).
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Fig. 6. RSSI fluctuations (sample index = 1300).
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Fig. 7. Detection error rate for room 1.
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Fig. 8. Detection error rate for room 2.
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Fig. 9. Detection error rate for room 3.
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Fig. 10. Detection results for room 1 (N=45).
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Fig. 11. Detection results for room 2 (N=45).
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Fig. 12. Detection results for room 3 (N=45).


