
A Calculus for Constraint-Based Flow Typing

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington, NZ

djp@ecs.vuw.ac.nz

June 2012

Abstract
Flow typing offers an alternative to traditional Hindley-Milner type inference. A key distinc-

tion is that variables may have different types at different program points. Flow typing systems
are typically formalised in the style of a dataflow analysis. In the presence of loops, this re-
quires a fix-point computation over typing environments. Unfortunately, for some flow typing
problems, the standard iterative fix-point computation may not terminate. We formalise such a
problem we encountered in developing the Whiley programming language, and present a novel
constraint-based solution which is guaranteed to terminate. This provides a foundation for others
when developing such flow typing systems.

1 Introduction
Type inference is useful for simplifying and reasoning about statically typed languages. Scala [1],
C#3.0 [2], OCaml [3] and, most recently, Java 7 all employ local type inference (in some form) to
reduce syntactic overhead. Type inference can also be used to type existing untyped programs (e.g.
in JavaScript [4] or Python [5]).

Traditional type inference follows the approach of Hindley-Milner [6, 7], where exactly one type
is inferred for each program variable. Flow typing offers an alternative where a variable may have
different types at different program points. The technique is adopted from flow-sensitive program
analysis and has been used for non-null types [8, 9, 10, 11, 12, 13], information flow [14, 9, 15],
purity checking [16] and more [8, 11, 17, 18, 19, 20, 21]. Few languages exist which incorporate flow
typing directly. Typed Racket [22, 20] provides a typed sister language for untyped Racket, where
flow typing is essential to capture common idioms in the untyped language. Similarly, the Whiley
language employs flow typing to give it the look-and-feel of a dynamically typed language [23, 24,
25, 26]. Finally, Groovy 2.0 has very recently incorporated an optional flow typing system [27].

1.1 Flow Typing
A defining characteristic of flow typing is the ability to retype a variable — that is, assign it a
completely unrelated type. The JVM Bytecode Verifier [28] provides an excellent illustration:

public static float convert(int):
iload 0 // load register 0 on stack
i2f // convert int to float
fstore 0 // store float to register 0
fload 0 // load register 0 on stack
freturn // return value on stack

In the above, register 0 contains the parameter value on entry and, initially, has type int. The type
of register 0 is subsequently changed to float by the fstore bytecode. To ensure type safety, the
JVM bytecode verifier employs a typing algorithm based upon dataflow analysis [29]. This tracks
the type of a variable at each program point, allowing it easily to handle the above example.

1

As another example, consider the following program written in Whiley [23, 24, 25, 26] — a
language which exploits flow-typing to give the look-and-feel of a dynamically typed language:

define Point as {int x, int y}
define RealPoint as {real x, real y}

RealPoint normalise(Point p, int w, int h):
p.x = ((real) p.x) / w
p.y = ((real) p.y) / h
return p

Here, the type of p is updated from {int x, int y} to {real x,int y} after p.x is as-
signed, and {real x,real y} after p.y is assigned. This is safe since Whiley employs value
semantics for all data types. Thus, variable p is not a reference to a Point (as it would be in e.g.
Java), rather it is a Point.

Flow typing can also retype variables after conditionals. A non-null type system (e.g. [11, 12, 13])
prevents variables which may hold null from being dereferenced. The following illustrates:

int cmp(String s1, @NonNull String s2) {
if(s1 != null) {return s1.compareTo(s2);}
else { return -1; }

}

The modifier @NonNull indicates a variable definitely cannot hold null and, hence, that it can be
safely dereferenced. To deal with the above example, a non-null type system will retype variable s1
to @NonNull on the true branch — thus allowing it to type check the subsequent dereference of
s1.

The Whiley programming language also supports retyping through conditionals. This is achieved
using the is operator (similar to instanceof in Java) as follows:

define Circle as {int x, int y, int r}
define Rect as {int x, int y, int w, int h}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:

return PI * s.r * s.r
else:

return s.w * s.h

A Shape is either a Rect or a Circle (which are both record types). The type test “s is Circle”
determines whether s is a Circle or not. Unlike Java, Whiley automatically retypes s to have type
Circle (resp. Rect) on the true (resp. false) branches of the if statement. There is no need to
explicitly cast s to the appropriate Shape before accessing its fields.

1.2 Contributions
Existing flow typing systems are generally formulated in the style of a dataflow analysis (e.g. [29, 9,
12, 16]). In the presence of loops, this requires a fix-point computation over typing environments.
Unfortunately, for some flow typing problems, the standard iterative fix-point computation may not
terminate. We formalise such a problem that we encountered in developing the Whiley programming
language [23, 24, 25, 26], and present a novel constraint-based solution which is guaranteed to
terminate. The result is a small calculus, called FT (for Flow Typing), which provides a foundation
to help others when developing such flow typing systems. Finally, whilst our language of constraints
is similar to previous constraint-based type inference systems (e.g. [30, 31, 32, 33, 34]), the key
novelty of our approach lies in a mechanism for extracting recursive types from constraints via
elimination and substitution.

2

1.3 Organisation
We first introduce the syntax and semantics of FT (§2). We then formulate typing rules in the
dataflow style, and identify the termination problem (§3). Finally, we present our constraint-based
typing rules and detail how these can be solved in finite time (§4).

3

2 Syntax, Semantics & Subtyping
We now introduce our calculus, called FT (for Flow-Typing), for formalising flow-typing problems.
This was motivated from our work developing the Whiley programming language [23, 26, 24], and
the calculus is specifically kept to a minimum to allow us to focus on the interesting problem. In
this section, we introduce the syntax, semantics and subtyping rules for FT. In later sections we will
present different formulations of the typing rules for FT.

2.1 Language of Types
The following gives a syntactic definition of types in FT:

T ::=void | any | int | {T1 f1, . . . , Tn fn} | T1 ∨ T2 | µX.T | X

Here, void represents the empty set of values (i.e. ⊥), whilst any the set of all possible values (i.e.
⊤). Also, {T1 f1, . . . , Tn fn} represents a record with one or more fields. The union T1∨ T2 is a
type whose values are in T1 or T2. Union types are generally useful in flow typing systems, as they
can characterise information flow at meet points in the control-flow graph. Types of the form µX.T
describe recursive data structures. For example, µX.({int data} ∨ {int data, X next}) gives the
type of a linked list, whilst µX.({int data} ∨ {int data, X lhs, X rhs}) gives the type of a bi-
nary tree. For simplicity, recursive types are treated equi-recursively [35]. That is, recursive types
and their unfoldings are not distinguished. For example, µX.(int ∨ {int data, X next}) is consid-
ered identical to int ∨ {int data, µX.(int ∨ {int data, X next}) next} (i.e. it’s one-step un-
folding), and so on. Thus, we do not need explicit cases for handling recursive types as, whenever
we encounter µX.T, we may implicitly unfold it to T[X 7→µX.T] as necessary. Finally, recursive types
are restricted to being contractive [36], which prohibits non-sensical types of the form µX.X and
µX.(X ∨ . . .).

2.2 Type Semantics
To better understand the meaning of types in FW, it is helpful to give a semantic interpretation
(following e.g. [31, 37, 38, 39]). The aim is to give a set-theoretic model where subtype corresponds
to subset. The domain D of values in our model consists of the integers and all records constructible
from values in D:

D = Z ∪
{
{f1 : v1, . . . , fn : vn} | v1∈D, . . . , vn∈D

}
Definition 1 (Type Semantics) Every type T is characterized by the set of values it accepts, given
by JTK and defined as follows:

JanyK = DJintK = ZJ{T1 f1, . . . , Tn fn}K = {f1 : v1, . . . , fn : vn} forall v1∈JT1K, . . . , vn∈JTnKJT1 ∨ . . . ∨ TnK = JT1K ∪ . . . ∪ JTnK
It is important to distinguish the syntactic representation from the semantic model of types. The

former corresponds to a physical machine representation, whilst the latter is a mathematical ideal.
As such, the syntactic representation diverges from the semantic model and, to compensate, we must
establish a correlation between them. For example {int ∨ {int x} f} and {int f} ∨ {{int x} f}
have distinct syntactic representations, but are semantically indistinguishable. For simplicity, in this
paper, we assume one cannot distinguish a type from its equivalences. In practice, any algorithm
for representing types would need to address this (e.g. by using canonical forms) but this is largely
orthogonal to the issue at hand.

4

2.3 Subtyping
Amadio and Cardelli were the first to show that subtyping in the presence of recursive types was
decidable [36]. Their system included function types, ⊤ and ⊥. Kozen et al. improved this by de-
veloping an O(n2) algorithm [40]. The system presented here essentially extends this in a straight-
forward manner. Gapeyev et al. give an excellent overview of the subject [41] and, indeed, our
subtype relation is very similar to theirs.

In a nominal type system, types correspond to trees and, thus, the subtype operator can be defined
using rules such as:

T1 ≤ T′1 . . . Tn ≤ T′n
{T1 f1, . . . , Tn fn} ≤ {T′1 f1, . . . , T′n fn}

Here, a strong property holds that the “height” of T1 is strictly less than e.g. {T1 f} — leading to a
simple proof of termination since every type has finite height. In a structural type system, like FW,
types correspond to graphs not trees. Defining the subtype operator using rules such as above leads to
non-termination in the presence of cycles. To resolve this we employ ideas from co-induction [41].
The subtyping rules are given in Figure 1 and employ judgements of the form “T1 ≤ T2 ⇂ C”, read
as: T1 is a subtype of T2 under assumptions C. To show T1 is a subtype of T2, we use the rules of
Figure 1 starting with no assumptions:

Definition 2 (Subtyping) Let T1 and T2 be types. Then, T1 is a subtype of T2, denoted T1 ≤ T2, iff
T1 ≤ T2 ⇂ ∅.

The set of assumptions C helps ensure the subtype rules from Figure 1 terminate. As we ascend
a typing derivation comparing components of T1 and T2, the size of the assumptions set C always
increases. The S-INDUCT rule is critical here, as it protects against infinite recursion (by, essentially,
treating the assumption set C as a “visited” set) — this follows the standard treatment of recursive
types (see e.g. [35, 41]). Additionally, the size of C can be bounded as follows: let m (resp. n) be
the number of nodes in the type graph of T1 (resp. T2); then, every addition to C made by a rule of
Figure 1 corresponds to a pair (v, w), where v and w are (respectively) nodes in the type graph of T1
and T2 — thus, |C| is O(m · n).

Apart from assumption sets, the rules of Figure 1 are mostly straightforward. Subtyping of
records is via rule S-REC which allows for depth but (for simplicity) not width [35]. Thus, it
follows that {T1 f1, . . . , Tn fn} ≤ {T′1 g1, . . . , T′m gm} if n = m and ∀1≤i≤n.(fi = gi ∧ Ti ≤ T′i)
(i.e. both records have the same fields and each field in the former subtypes its corresponding field
in the latter). Note, it is safe for e.g. {int f} ≤ {any f} to hold because types in FT are not ref-
erence types (as in e.g. Java), but value types. Rule S-UNION3 is perhaps the most interesting, as
it captures distributivity over records. For example, {int ∨ {int x} f} ≤ {int f} ∨ {{int x} f}
holds under S-UNION3.

Finally, FT’s subtype relation forms a join-semi lattice. That is, any two types T1, T2 have a well
defined least upper bound (denoted T1 ⊔ T2). This is trivially true since it corresponds to T1 ∨ T2.

2.3.1 Subtype Soundness and Completeness

We now briefly reconsider the relationship between the syntactic and semantic notions of subtyping.
Recall that, in the former, subtyping is defined by the algorithmic rules given in Figure 1 whilst, in
the latter, subtyping corresponds to the subset relation between the semantic sets describing a type
(i.e. Definition 1).

We now state the Soundness and Complete Theorems which establish a formal connection be-
tween the semantic and syntactic notions of subtyping.

Theorem 1 (Subtype Soundness) Let T and T′ be types where T ≤ T′. Then, JTK ⊆ JT′K.

Theorem 2 (Subtype Completeness) Let T and T′ be types where JTK ⊆ JT′K. Then, T ≤ T′.

Whilst we have not given proofs of these theorems, it is relatively easy to see they hold by
inspection. A formal proof of these properties, however, is quite involved and outside the scope of
this report. The key challenge is that, due to the need for the assumption sets C, a standard structural
induction cannot be applied (see e.g. [42, 43, 44] for more on this).

5

Subtyping:

T ≤ T ⇂ C (S-REFLEX)

{T1 ≤ T2} ⊆ C
T1 ≤ T2 ⇂ C

(S-INDUCT)

void ≤ T ⇂ C (S-VOID)

T ≤ any ⇂ C (S-ANY)

C2 = C1 ∪ {T ≤ T′}
T1 ≤ T′1 ⇂ C2 . . . Tn ≤ T′n ⇂ C2

T = {T1 f1, . . . , Tn fn} T′ = {T′1 f1, . . . , T′n fn}
T ≤ T′ ⇂ C1

(S-REC)

C2 = C1 ∪ {T1 ≤ T2 ∨ T3}
∃i∈{2, 3}.T1 ≤ Ti ⇂ C2

T1 ≤ T2 ∨ T3 ⇂ C1
(S-UNION1)

C2 = C1 ∪ {T1 ∨ T2 ≤ T3}
T1 ≤ T3 ⇂ C2 T2 ≤ T3 ⇂ C2

T1 ∨ T2 ≤ T3 ⇂ C1
(S-UNION2)

T = {T1 f1 . . . , Ti ∨ T′i fi . . . , Tn fn}
S = {T1 f1 . . . , Ti fi, . . . , Tn fn} ∨ {T1 f1 . . . , T′i fi, . . . , Tn fn}

T ≤ S ⇂ C
(S-UNION3)

Figure 1: Subtyping rules for FT.

6

Syntax:
F ::= T f(T1 n1, . . . , Tn nn) {B}
B ::= S B | ϵ
S ::=

q
n = v

yℓ |
q
n = m

yℓ |
q
n.f = m

yℓ |
q
n = m.f

yℓ |
q
return n

yℓ | while
q
n < m

yℓ {B}
v ::= {f1 : v1, . . . , fn : vn} | i

Figure 2: Syntax for FT. Here, n, m represent variable identifiers, whilst i represents the integer
constants.

2.4 Syntax

Figure 2 gives the syntax of FT where
q
·
yℓ

is not part of the syntax but (following [45]) identifies
the distinct program points and associates each with a unique label ℓ (these will be explained later).
An example FT program is given below:

int f(int x) {
y = 11

z = {f : 1}2

while x < y3 {
x = z.f4

}
return x5

}

Here, we see how each distinct program point has a unique label. Whilst FT programs are fairly
limited, they characterise an interesting flow typing problem which cannot easily be solved using
an iterative fix-point computation (such as is commonly used for dataflow analysis). Furthermore,
it is relatively easy to add additional constructs such as if-else statements, function invocation,
arithmetic, etc.

2.5 Semantics
A small-step operational semantics for FT is given in Figure 3. The semantics describe an abstract
machine executing statements of the program and (hopefully) halting to produce a value. Here, ∆ is
the runtime environment, whilst v denotes runtime values. A runtime environment ∆ maps variables
to their current runtime value.

In Figure 3, halt(v) is used to indicate the machine has halted producing value v. This must
be distinguished from the notion of being “stuck”. The latter occurs when the machine has not
halted, but cannot execute further (because none of the transition rules from Figure 3 applies). For
example, a statement n = m.f can result in the machine being stuck. To see why, notice that only
rule R-VF can be applied to such a statement. This has an explicit requirement that m currently holds
a record value containing at least field f. Thus, in the case that m does not currently hold a record
value, or that it holds a record value which does not contain a field f, then the machine will be stuck.

Some observations can be made from Figure 3. Firstly, variables do not need to be explicitly
declared — rather, they are declared implicitly by assignment. Secondly, variables must be defined
before being used — as, otherwise, the machine will get stuck. Finally, assignments to fields always
succeed. This is captured in rule R-FV, where the record value being assigned is updated with a
(potentially new) field f. The following illustrates:

{any f, int g} f(any y) {
x = {f : 1}1

x.f = y2

x.g = 13

return x4

}

This program executes under the rules of Figure 3 without getting stuck. Furthermore, as we will
see, it can be type checked with appropriate flow typing rules (§4). The key to this is that variable

7

Semantics:

⟨∆,
q
n=v

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VC)

v = ∆(m)

⟨∆,
q
n=m

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VV)

∆(m) = {. . . , f : v, . . .}
⟨∆,

q
n=m.f

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VF)

∆(n) = {f1 : v1, . . . , fn : vn} v = ∆(n)[f 7→∆(m)]

⟨∆,
q
n.f=m

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-FV)

v = ∆(n)

⟨∆,
q
return n

yℓ
B⟩ −→ halt(v)

(R-RV)

∆(n) < ∆(m)

⟨∆, while
q
n<m

yℓ {B1} B2⟩
−→ ⟨∆, B1 while

q
n<m

yℓ {B1} B2⟩
(R-W1)

∆(n) ≥ ∆(m)

⟨∆, while
q
n<m

yℓ {B1} B2⟩ −→ ⟨∆, B2⟩
(R-W2)

Figure 3: Small-step operational semantics for statements in FT.

x has different types at different program points: after initialisation, it has type {int f}; after the
subsequent assignment to field f this becomes {any f}; and, finally, after the assignment to field g
it has type {any f, int g}.

The ability to safely update field types in FT contrasts with traditional object-oriented languages
(e.g. Java) where assignments must respect the declared type of the assigned field. The semantics
of FT are (in some ways) closer to those of a dynamically typed language where one can assign to
fields and variables at will. Indeed, flow typing is exploited in the Whiley language [24, 26] for this
reason to give the look-and-feel of a dynamically typed language.

8

3 Dataflow-Based Flow Typing
We now formulate the typing rules for FT as a dataflow analysis (see e.g. [45]). This is an intuitive
and commonly used approach (e.g. [29, 9, 12, 16, 21]). Our purpose is to highlight an inherent
limitation of using this approach for FT — namely, that it requires finding a fix-point over typing
environments for which the standard iterative fix-point computation fails to terminate in some cases.

Dataflow-based flow typing requires a separate environment, Γℓ, for each program point ℓ. This
gives the types of all variables immediately before the statement at ℓ. For example, consider a small
program (left) along with its typing environments (right):

int f(int x) {
y = x1 // Γ1 = {x 7→ int}
return y2 // Γ2 = {x 7→ int, y 7→ int}

}

Since y is defined on line 1, it is absent from Γ1 (which represents the environment immediately
before line 1). The following illustrates a more complex example:

int ∨ {int g} f(int x) {
y = 11

while x < x2 {
y = {g : 1}3

}
return y4

}

The question is, what type does y have in Γ4? We know that y has type int if the loop isn’t taken,
or {int g} otherwise. To capture this, we compute the least upper bound of the type environments:

Γ4= {x 7→int, y 7→int} ⊔ {x 7→int, y 7→{int g}}
↪→{x 7→int, y 7→int∨{int g}}

Here, Γ4(y) = int∨{int g} as an int value can flow from before the loop, whilst {int g} can
flow from around the loop. When reasoning about loops, we are tacitly assuming the loop body
can be executed zero or more times — even in situations, such as above, where we could be more
precise. This approach is safe (but conservative) and does not require complex reasoning (e.g. with
an automated theorem prover). Furthermore, it is a common assumption (e.g. Java’s treatment of
definite assignment and the final modifier [46]).

In order to define how the least upper bound on environments is determined, we must define an
appropriate partial order over environments:

Definition 3 (Environment Subtyping) Let Γℓ1 and Γℓ2 be typing environments. Then, we say that
Γℓ1 subtypes Γℓ2, denoted Γℓ1 ≤ Γℓ2, iff ∀v∈dom(Γℓ2).Γℓ1(v) ≤ Γℓ2(v).

For example, the following hold under Definition 3:

{v 7→ int} ≤ {v 7→ any}
{v 7→ {int f}, w 7→ int} ≤ {v 7→ any}

Since the underlying subtype relation over types forms a join semi-lattice, it follows that environment
subtyping does as well (where ⊥ = ∅ and ⊤ maps all program variables to any). Hence, it follows
that any two environments have a unique least upper bound.

3.1 Dataflow-Based Typing Rules
The dataflow-based typing rules for FT are given in Figure 4. Rule T-FUN states that an FT function
can be typed if its body can be typed with parameters mapped to their declared types. The special
variable $ is included to provide access to the return type. Rule T-BLK threads an environment
through a sequence of statements.

9

Function Typing (dataflow):

{n1 7→ T1, . . . , nk 7→ Tk, $ 7→ T} ⊢ B : Γ
⊢ T f(T1 n1, . . . , Tk nk) {B}

(T-FUN)

Block Typing (dataflow):

Γ0 ⊢ S : Γ1 Γ1 ⊢ B : Γ2
Γ0 ⊢ S B : Γ2

(T-BLK)

Statement Typing (dataflow):

⊢ v : T

Γ ⊢
q
n=v

yℓ
: Γ[n 7→ T]

(T-VC)

Γ(m) = v

Γ ⊢
q
n=m

yℓ
: Γ[n 7→ v]

(T-VV)

Γ(m) = {. . . , T f, . . .}
Γ ⊢

q
n=m.f

yℓ
: Γ[n 7→ T]

(T-VF)

Γ(n) = {T1 f1, . . . , Tn fn} T = Γ(n)[f 7→ Γ(m)]

Γ ⊢
q
n.f=m

yℓ
: Γ[n 7→ T]

(T-FV)

Γ(n) ≤ Γ($)

Γ ⊢
q
return n

yℓ
: ∅

(T-RV)

Γ0 ⊔ Γ1 ⊢ B : Γ1
Γ0 ⊔ Γ1(n)=int Γ0 ⊔ Γ1(m)=int

Γ0 ⊢ while
q
n < m

yℓ {B} : Γ0 ⊔ Γ1

(T-WHILE)

Figure 4: Dataflow-based typing rules for FT.

10

The typing rules for statements describe their effect on the typing environment. They are judge-
ments of the form Γ ⊢ S : Γ′ where Γ represents the environment immediately before S, and Γ′ rep-
resents that immediately after. Thus, the effect of statement S is captured in the difference between
Γ and Γ′. For example, consider:

int f(any x) {
x = 11

return x2

}

Here, Γ1 = {x 7→any, $ 7→int} gives the environment immediately before the assignment. Ap-
plying T-VC yields the typing environment immediately after it, namely Γ2 = {x 7→int, $ 7→int}.
Finally, T-RV confirms that x is a subtype of the declared return type (i.e. that Γ2(x) ≤ Γ2($) holds).

Rule T-VC exploits the fact that values have fixed types (obtained via ⊢ v : T). In rule T-VF, the
requirement Γ(m) = {. . . , T f, . . .} ensures that m holds a record containing field f at the given point.
Similarly, in T-VF, {T1 f1, . . . , Tn fn}[f 7→T] constructs a type identical to {T1 f1, . . . , Tn fn}, but
where field f now has type T (even if the original didn’t contain a field f). Finally, rule T-WHILE
requires a fix-point be obtained for the typing environment produced from the body. Since this is a
non-trivial process, we discuss it in more detail in the following subsection.

3.2 Termination
Computing a fix-point for a dataflow analysis is normally done using an iterative computation (see
e.g. [47, 48, 45]). Unfortunately, using such a computation to solve the typing rules of Figure 4 will
not always terminate. The following illustrates:

void loopy(int x, int y) {
z = {f:1}1

while x < y2 {
z.f = z3

} }

This example causes an iterative fix-point solver for rule T-WHILE to iterate forever, generating
larger and larger environments:

Γ3 = {z 7→ {int f}, . . .}
Γ3 = {z 7→ {int ∨ {int f} f}, . . .}
Γ3 = {z 7→ {int ∨ {int f} ∨ {int ∨ {int f} f} f}, . . .}
. . .

Proving that an iterative fix-point computation always terminates is normally done by showing two
key properties: firstly, the domain (i.e. types) and partial order (i.e. subtyping) must form a join
semi-lattice (of finite height); secondly, the transfer functions (i.e. the rules of Figure 4) must be
monotonic. Unfortunately, the lattice of types in FT has infinite height — meaning such a proof
strategy will not work in this case. Observe, however, that intuitively a valid typing of the above
example should exist:

Γ3 = {x 7→ int, y 7→ int, z 7→ µX.{(int ∨ X) f}} (1)

The key problem, then, is how one could obtain such a typing in practice. In fact, there are many
examples in the dataflow analysis literature of systems with lattices of infinite height (e.g. integer
range analysis [49, 50, 45, 51, 52, 53]). Such systems are forced to terminate through the introduc-
tion of a widening operator. Such an operator is applied after a certain number of iterations of the
computation. Typically, it will attempt to “guess” a value which causes the computation to converge
and, if that fails, will move to a worst-case default (e.g. Γ3 = {x 7→ int, y 7→ int, z 7→ any} —
which in this case prevents the program from being typed).

The use of a widening operator is an unsatisfactory solution to this problem. Indeed, the intuitive
typing given for Γ3 above (1) still does not converge under the rules of Figure 4 and it remains
unclear what additional machinery would be necessary to achieve this. In the following section,
we present a novel constraint-based solution to this flow typing problem, which is guaranteed to
terminate without the need for a widening operator.

11

4 Constraint-Based Flow Typing
We now present a novel constraint-based formulation of the typing rules for FT in the style of
e.g. [54, 55, 31, 56, 57, 58]. Critically, this does not require a fix-point computation and, hence, is
guaranteed to terminate. Our language of type constraints is as follows:

c ::= nℓ⊒ e | T ⊒ e

e ::= T | nℓ | e.f | e1[f 7→e2] |
⊔
ei

Here, T represents a fixed type from those outlined in §2, whilst nℓ denotes the set of labelled
type variables which range over types (though, for simplicity, we will sometimes omit the label).
The idea is that, for a given FT program, we generate a set of such constraints and subsequently
solve them. The following illustrates the idea:

int ∨ {int g} f(int x,int y){ // x0⊒int, y0⊒int

r = 01 // r1 ⊒ int

while x < y2 { // r2 ⊒ r1 ⊔ r3
r = {g : 1}3 // r3 ⊒ {int g}

}
return r4 // int ∨ {int g} ⊒ r2

}

Here, we see that the life of each program variable may be split across multiple constraint variables
(e.g. r is represented by r1, r2 and r3). Those familiar with Static Single Assignment Form [59, 60,
61] will notice a strong similarity here.

Definition 4 (Typing) A typing, Σ, maps variables to types and satisfies a constraint set C, denoted
by Σ |= C, if for all e1⊒e2 ∈ C we have E(Σ, e1) ≥ E(Σ, e2). Here, Σ(e) is defined as follows:

E(Σ, T) = T (1)
E(Σ, nℓ) = T if {nℓ 7→ T} ⊆ Σ (2)

E(Σ, e.f) =
∨
Ti if E(Σ, e)=

∨
{. . . , Ti f, . . .} (3)

E(Σ, e1[f 7→e2]) =
∨
{T f}[f 7→ T] if E(Σ, e1)=

∨
{T f} and E(Σ, e2)=T (4)

E(Σ,
⊔
ei) =

∨
Ti if E(Σ, e1) = T1, . . . , E(Σ, en) = Tn (5)

Rule (3) selects field f from a union of one or more records containing that field. For example,
E(∅, ({int f}∨{any f}).f) = int ∨ any. Likewise, rule (4) updates the type of field f across
a union of one or more records. Here,

∨
{T f} is a short-hand notation for a union of records

{T11 f11, . . . , T1n f1n} ∨ . . . ∨ {Tk1 fk1, . . . , Tkm fkm}, while {T f}[f 7→ T] constructs a type identical to
{T f}, but where field f now has type T (even if the original didn’t contain a field f). Thus,
E(∅, ({int f}∨{int g})[f 7→any])={any f}∨{any f, int g}.

Finally, a given FT program is considered type safe if a valid typing exists which satisfies all the
generated typing constraints by Definition 4.

4.1 Constraint-Based Typing Rules
Figure 5 gives the constraint-based typing rules for FT which have a general form of Γ0 ⊢ S : Γ1 ⇂ C
(except T-FUN, which is similar). Here, Γ0 represents the typing environment immediately before
S, whilst Γ1 represents that immediately after. In the constraint-based formulation, a typing environ-
ment Γ maps each variable to the program point where its current value was defined. Finally, C is
the constraint set which must hold (i.e. admit a valid solution) for that statement to be type safe.

As before, T-FUN initialises the typing environment from the parameter types, and adds a con-
straint for the return type. The latter employs a special variable, $, to connect the return type with
any returned values (via T-RV). The following illustrates:

int f(any x) { // x0⊒ any, int⊒ $ (T-FUN)

x = 11 // x1⊒ int (T-VC)

return x2 // $ ⊒ x1 (T-RV)

}

12

Function Typing (constraints):

{n1 7→ 0, . . . , nk 7→ 0} ⊢ B : Γ1 ⇂ C1
C2 = C1 ∪ {n10 ⊒ T1, . . . , nk0 ⊒ Tk, T ⊒ $}

⊢ T f(T1 n1, . . . , Tk nk) B ⇂ C2
(T-FUN)

Block Typing (constraints):

Γ0 ⊢ S : Γ1 ⇂ C1 Γ1 ⊢ B : Γ2 ⇂ C2
Γ0 ⊢ S B : Γ2 ⇂ C1 ∪ C2

(T-BLK)

Statement Typing (constraints):

⊢ v : T

Γ ⊢
q
n=v

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒T}

(T-VC)

Γ(m) = κ

Γ ⊢
q
n=m

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒mκ}

(T-VV)

Γ(m) = κ

Γ ⊢
q
n=m.f

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒mκ.f}

(T-VF)

Γ(n) = κ Γ(m) = λ

Γ ⊢
q
n.f=m

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒nκ[f 7→mλ]}

(T-FV)

Γ(n) = κ

Γ ⊢
q
return n

yℓ
: ∅ ⇂ {$ ⊒nκ}

(T-RV)

defs(B) = n

Γ1 = Γ0[n 7→ ℓ] Γ1 ⊢ B : Γ2 ⇂ C1
Γ0(n) = κ Γ2(n) = λ

Γ1(n) = κ Γ1(m) = λ C2 = {int ⊒ nκ, int ⊒ mλ}
Γ0 ⊢ while

q
n < m

yℓ {B} : Γ1 ⇂ C1 ∪ C2 ∪ {nℓ⊒nκ⊔ nλ}

(T-WHILE)

Variable Definitions:

defs(S ; B) = defs(S) ∪ defs(B)
defs(

q
n = . . .

yℓ
) = {n}

defs(
q
n.f = . . .

yℓ
) = {n}

defs(
q
return n

yℓ
) = ∅

defs(while
q
n < m

yℓ {B}) = defs(B)

Figure 5: Constraint-Based Typing rules for FT.

13

Here, x1 is connected to the return type through $. Rule T-VC constrains the type of the assigned
variable to that of the assigned (constant) value. The environment produced (i.e. Γ[n 7→ ℓ]) equals
the old (i.e. Γ) but with n mapped to ℓ. Rule T-VV constrains the type of the assigned variable to
that of the right-hand side. Here, Γ(m) = κ determines the program point (κ) where the type variable
currently representing m was defined (mκ).

Rule T-VF is similar to T-VC, but instead constrains the assigned variable to the corresponding
field of the right-hand side. Rule T-FV uses a constraint of the form nℓ⊒nκ[f 7→mλ]. This constrains
all fields of nℓ (except for f) to their corresponding type in nκ, whilst field f now maps to mλ.

Finally, rule T-WHILE is the most involved. In the rule, the overbar (e.g. n) is a short-hand
indicating a list (or set) of items. The rule employs a support function, defs(B), to identify variables
assigned in B. Each variable n∈defs(B) requires a constraint to merge flow from before the loop
(i.e. nκ) with that from around the loop (i.e. nλ). For each, a variable nℓ is created to capture this
flow. This corresponds (roughly) to the placement of ϕ−nodes in SSA form [59, 60, 61]. However,
our setting is simpler as we do not have unstructured control-flow.

4.2 Variable Elimination
We now begin the process of presenting our algorithm for solving the typing constraints generated
for a given function. Our purpose is not to present an efficient algorithm, but rather one which is
easy to understand and formalise.

We first consider the variable elimination step. The essence is, for each variable nℓ, to generate
a single constraint from which we can extract the typing for nℓ. We begin with some formalities:

Definition 5 (Variable Scoping) Let CX denote a constraint set where X defines the variables per-
missible in any e1⊒e2 ∈ CX .

Definition 6 (Single Assignment) A constraint set CX is in single assignment form if, for each
nℓ ∈ X , there is at most one constraint in CX of the form nℓ⊒ e.

Observe that any constraint set CX generated from the rules of Figure 5 is almost in single
assignment form. That’s because, by construction, only T-RV can give rise to multiple constraints
with the same left-hand side (i.e. $). Thus, we can transform CX into single assignment form by
collecting all such constraints and combining them:

$ ⊒ nℓ0, . . . , $ ⊒ nℓn =⇒ $ ⊒ nℓ0 ⊔ . . . ⊔ nℓn

We now apply successive substitutions to eliminate variables and narrow down the final con-
straint for a given variable:

Definition 7 (Elimination Step) Let CX be a constraint set in single assignment form, where we
have nℓ⊒ e ∈ CX . Then, we can eliminate nℓ from CX to form a (smaller) constraint set as follows:
CX−{nℓ}={e1⊒ e2Jnℓ 7→eK | e1⊒ e2 ∈ CX ∧ e1 ̸= nℓ}.

Here, the choice of nℓ to eliminate is arbitrary. Recall that e1 is either a variable nκ, or a type
T (i.e. not an arbitrary expression). Furthermore, e2Jnℓ 7→eK substitutes all occurrences of nℓ with
e in e2. To determine the typing for a given variable nℓ, we progressively eliminate variables until
only nℓ remains. Then, we have nℓ⊒ e ∈ C{nℓ} and from this we extract the type for nℓ (discussed
further in §4.3).

To illustrate, we revisit the example from §3.2 which caused non-termination for an iterative
fix-point solver of the dataflow typing rules (i.e. without widening):

void loopy(int x, int y) { // x0⊒ int, y0⊒ int, void⊒ $ (T-FUN)

z = {f : 1}1 // z0⊒ {int f} (T-VC)

while x < y2 { // z1⊒ z0 ⊔ z2, int⊒x0, int⊒y0 (T-WHILE)

z.f = z3 // z2⊒ z1[f 7→ z1] (T-FV)

} }

14

Eliminating for each of the constraint variables contained in the above yields the following constraint
sets (left) and extracted variable typings (right):

C{$}={void ⊒ $} =⇒ Σ($)=void

C{x0}={x0 ⊒ int} =⇒ Σ(x0)=int

C{y0}={y0 ⊒ int} =⇒ Σ(y0)=int

C{z0}= {z0 ⊒ {int f}} =⇒ Σ(z0)={int f}
C{z1}={z1⊒{int f} ⊔ z1[f 7→z1]} =⇒ Σ(z1)=µX.({(int ∨ X) f})
C{z2}={z2⊒({int f} ⊔ z2)[f 7→{int f}⊔z2]} =⇒ Σ(z2)=µX.({{int f}∨X f})

An interesting observation lies in the difference between the type of z1 and z2. The “smallest” type
contained in z1 is {int f}, whilst for z2 it is {{int f} f}. These types correspond to the first
iteration of the loop, with the latter representing the case where {int f} (i.e. z’s initial value) was
already assigned into field f of variable z. Furthermore, it is relatively easy to show that Σ (as shown
above) is a valid typing (under Definition 4) for the constraints generated for loopy().

The variable elimination process is trivially guaranteed to terminate. However, an important
property is to show that it preserves solutions. That is, if a solution for the original constraint set
exists, then a solution still exists a after variable elimination:

Lemma 1 (Safe Substitution) Assume e1, e2, nℓ, E and Σ where E(Σ, e1) ≤ Σ(nℓ) and E(Σ, e2) is
well-defined. Then, it follows that E(Σ, e2Jnℓ 7→ e1K) ≤ E(Σ, e2).

Proof 1 By structural induction on e2, where the induction hypothesis states that the Lemma holds
for any substructure of e2:

• Case T: Straightforward since e2Jnℓ 7→e1K = e2.

• Case mκ: if mκ ̸= nℓ then e2Jnℓ 7→e1K = e2. Otherwise, e2 = nℓ and e2Jnℓ 7→e1K = e1.
Hence, E(Σ, e2Jnℓ 7→e1K) ≤ E(Σ, e2) follows by assumption.

• Case e3.f: By induction, E(Σ, e3Jnℓ 7→e1K) ≤ E(Σ, e3). Thus, E(Σ, e3Jnℓ 7→e1K.f) ≤ E(Σ, e3.f)
follows by S-REC.

• Case e3[f 7→e4]: By induction, E(Σ, e3Jnℓ 7→e1K) ≤ E(Σ, e3) and E(Σ, e4Jnℓ 7→e1K) ≤ E(Σ, e4).
Thus, E(Σ, e3Jnℓ 7→e1K[f 7→e4Jnℓ 7→e1K]) ≤ E(Σ, e3[f 7→e4]) follows by S-REC.

• Case
⊔
ei: By induction, ∀i.E(Σ, eiJnℓ 7→e1K) ≤ E(Σ, ei). Thus, E(Σ,

⊔
eiJnℓ 7→e1K) ≤ E(Σ,

⊔
ei)

follows by S-UNION1 and S-UNION2.

Theorem 3 (Elimination Preservation) Let CX be a constraint set in single assignment form where
{nℓ⊒e} ⊆ CX , and Σ an arbitrary typing. If Σ |= CX then, Σ |= CX−{nℓ} for any nℓ ∈ X .

Proof 2 Consider an arbitrary constraint e1⊒e2 ∈ CX . By assumption Σ |= e1⊒e2 and we must
show Σ |= e1⊒e2Jnℓ 7→eK. Since Σ |= nℓ⊒ e we have Σ(nℓ) ≥ E(Σ, e) by Definition 4 which, in
turn, implies E(Σ, e2) ≥ E(Σ, e2Jnℓ 7→eK) by Lemma 1. Thus, Σ |= e1⊒e2Jnℓ 7→eK.

4.3 Type Extraction
Given the final constraint set C{nℓ} for a variable nℓ, the remaining challenge is to extract a type for
nℓ. In such case, we know there is a single constraint of the form nℓ⊒e ∈ C{nℓ} where e either uses
no variables (i.e. it’s non-recursive) or uses at most nℓ (i.e. it’s recursive). For the non-recursive case,
this is straight-forward as E(∅, e) (if it is well-defined) gives the typing for nℓ (recall E(Σ, e) from
Definition 4). For example, for nℓ⊒{int f}[f 7→ any] we have E(∅, {int f}[f 7→ any]) = {any f}.
If E(∅, e) is not well-defined (e.g. E(∅, int.f)) then the original program contained a type error.

For the recursive case, things are more involved. Given a recursive constraint of the form nℓ ⊒ e

(i.e. where nℓ is used in e), we first check no other nλ is used in e (if not we default to rejecting the
program — see §4.4), and then proceed as follows:

15

Base Extraction. To extract the base case, we use the following function:

B(nℓ, T) = T (1)
B(nℓ, nℓ) = • (2)
B(nℓ, e.f) = • if B(nℓ, e) = • (3)

B(nℓ, e.f) =
∨
Ti if B(nℓ, e) =

∨
{. . . , Ti f, . . .} (4)

B(nℓ, e1[f 7→ e2]) = • if B(nℓ, e1) = • or B(nℓ, e2) = • (5)
B(nℓ, e1[f 7→ e2]) =

∨
{T f}[f 7→ T] if B(e1)=

∨
{T f} and B(e2)=T (6)

B(nℓ,
⊔
ei) =

∨
Tj forall Tj where ∃i.B(nℓ, ei) = Tj (7)

Essentially, this factors out expressions which cannot generate concrete types (i.e. because they
reference the recursive variable nℓ). For example, we have B(z1, {int f} ⊔ z1[f 7→z1])={int f}
and B(z2, ({int f} ⊔ z2)[f 7→{int f} ⊔ z2]) = {{int f} f} for the recursive constraints gener-
ated for loopy() above.

Base Substitution. To extract a type for nℓ we exploit knowledge of the e1[f 7→ e2] construct using
the following substitution function:

S(Σ, T) = T (1)
S(Σ, nℓ) = T if {nℓ 7→ T} ⊆ Σ (2)

S(Σ, e1.f) = e2.f if S(Σ, e1) = e2 (3)
S(Σ, e1[f 7→ e2]) = e3[f 7→ e2] if S(Σ, e1) = e3 (4)

S(Σ,
⊔
ei) =

⊔
e′i if S(Σ, e1) = e′1, . . . ,S(Σ, en) = e′n (5)

The key is that for e1[f 7→ e2], rule (4) substitutes into e1 but not e2. For example, we have
S({z1 7→{int f}}, {int f} ⊔ z1[f 7→z1])={int f} ⊔ {int f}[f 7→ z1].

Final Extraction. Thus, for a recursive constraint nℓ ⊒ e1 we first extract the base type TB = B(nℓ, e1)
and then substitute to give e2 = S({nℓ 7→TB}, e1). The final type for nℓ is then determined as
µX.E({nℓ 7→X}, e2). For example, for z1 ⊒ {int f} ⊔ z1[f 7→z1] we get µX.({int f} ∨ {X f}).
Likewise, for z2 ⊒ ({int f} ⊔ z2)[f 7→{int f} ⊔ z2] we obtain µX.({{int f}∨X f} ∨ {{int f}∨X f}).

4.4 Limitations
The typing procedure described above is not complete. For example, it is possible (in some unusual
cases) that generated constraints contain multiple variables in the right-hand side after the elimina-
tion procedure. The following illustrates such a program:

void loopy(int x, int y) { // x0⊒ int, y0⊒ int, void⊒ $ (T-FUN)

z = {f : 1}1 // z0⊒ {int f} (T-VC)

while x < y2 { // z1⊒ z0 ⊔ z2, int⊒x0, int⊒y0 (T-WHILE)

z.f = z3 // z2⊒ z1[f 7→ z1] (T-FV)

}
while x < y2 { // z3⊒ z1 ⊔ z4, int⊒x0, int⊒y0 (T-WHILE)

z.f = z3 // z4⊒ z3[f 7→ z3] (T-FV)

}
}

In this case, we have the following for z3:

C{z1,z3} = {z1 ⊒ {int f} ⊔ z1[f 7→ z1], z3 ⊒ z1 ⊔ z3[f 7→ z3]}
↪→ C{z3} = {z3 ⊒ {int f} ⊔ z1[f 7→ z1] ⊔ z3[f 7→ z3]}

Here, we have not successfully eliminated z1 from C{z3} because it was a recursive constraint.
Therefore, in some cases, our extraction procedure cannot be applied and we must reject the pro-
gram (even if it could, in principle, be typed). A more expressive language of constraints would help
overcome this limitation.

16

Claim. Our typing procedure can be used to type many interesting examples (such as loopy()
from above). Furthermore, it is trivial to show that it is both sound and complete for sets of non-
recursive constraints. Thus, our procedure is at least as good as the dataflow-based approach outlined
in §3 with the added benefit of guaranteed termination. Observe that we need not be concerned about
whether our extraction procedure is sound or not. This is because we can simply extract a typing
and then certify via Definition 4 that it does (or does not) satisfy the generated constraints. And, of
course, if it does not satisfy the constraints we simply reject the program (for safety).

4.5 Soundness
In this section, we prove two standard properties for FT, namely: progress and preservation. Roughly
speaking, this corresponds to showing that a well-typed program will not get stuck during execution,
and that executing one step of a well-typed program preserves the validity of typing. The following
notion of a safe abstraction captures the relationship between type environments and their corre-
sponding runtime environments:

Definition 8 (Safe Abstraction) Let (Σ, Γ) be a typing and environment and ∆ a runtime envi-
ronment. Then, (Σ, Γ) safely abstracts ∆, denoted (Σ, Γ) ≈ ∆, iff dom(Γ) ⊆ dom(∆) and, for all
n 7→ℓ ∈ Γ, it holds that Σ(nℓ) |= ∆(n).

Observe that we cannot require dom(Γ) = dom(∆), as might be expected, since runtime envi-
ronments are the product of actual execution paths. Consider a while statement with a variable
n defined in only in the body. After the statement, n ̸∈ Γ since n was not defined before the loop.
However, if execution had proceeded through the loop body, then we would have n ∈ ∆.

Theorem 4 (Progress) Assume ∆, Σ and Γ where (Σ, Γ) ≈ ∆. If Γ ⊢ S : Γ′ ⇂ C and Σ |= C, then
either ⟨∆, S B⟩ −→ ⟨∆′, B′⟩ or ⟨∆, S B⟩ −→ halt(v).

Proof 3 By case analysis on S over the different statement forms from Figure 2.

• Case “
q
n = v

yℓ
B”: Straightforward, since rule R-VC has no antecedents.

• Case “
q
n = m

yℓ
B”: R-VV requires ∆(m) be well-defined. This follows from rule T-VV which

requires Γ(m) be well-defined.

• Case “
q
n = m.f

yℓ
B”: R-VF requires ∆(m.f) = {f : v, . . .}. This follows from T-VF, as

Σ |= {nℓ⊒ mκ.f} requires E(Σ, mκ.f) be well-defined. This implies Σ(mκ) =
∨
{. . . , T f, . . .}

by Definition 4.

• Case “
q
n.f = m

yℓ
B”: R-FV requires ∆(m) be well-defined and ∆(n) = {f1 : v1, . . . , fn, vn}.

The former follows as for R-VV. The latter from T-FV, as Σ |= {nℓ⊒ nκ[f 7→ mλ]} requires
E(Σ, nκ[f 7→mλ]) be well-defined. This implies Σ(nκ) =

∨
{T f} by Definition 4.

• Case “
q
return n

yℓ
B”: R-RV requires ∆(n) be well-defined. This follows from rule T-RV

which requires Γ(n) be well-defined.

• Case “while
q
n < m

yℓ{B1} B2”: R-W1 and R-W2 require Γ(n) and Γ(m) yield int val-
ues. This follows from T-WHILE as Σ |= {int⊒ nκ, int⊒ mλ} implies int ≥ Σ(nκ) and
int ≥ Σ(mλ).

Theorem 5 (Preservation) Assume arbitrary ∆, Σ, Γ where (Σ, Γ) ≈ ∆ holds. If Γ ⊢ S : Γ′ ⇂C, Σ |= C
and ⟨∆, S B⟩ −→ ⟨∆′, B′⟩, then (Σ, Γ′) ≈ ∆′.

Proof 4 By case analysis on S over the different statement forms from Figure 2.

• Case “
q
n = v

yℓ
B” where ⊢ v : T, ∆′= ∆[n 7→T] and Γ′= Γ[n 7→ℓ]: This follows from T-VC

as Σ |= {nℓ⊒ T} implies Σ(nℓ) ≥ T under Definition 4. Therefore, (Σ, Γ[n 7→ℓ]) ≈ ∆[n 7→T].

17

• Case “
q
n = m

yℓ
B” where Γ(m) = κ, ∆′= ∆[n 7→∆(m)] and Γ′= Γ[n 7→ℓ]: This follows from

T-VV as Σ |= {nℓ⊒ mκ} implies Σ(nℓ) ≥ Σ(mκ) under Definition 4. Therefore, it follows that
(Σ, Γ[n 7→ℓ]) ≈ ∆[n 7→∆(m)].

• Case “
q
n = m.f

yℓ
B” where Γ(m) = κ, ∆′= ∆[n 7→∆(m).f] and Γ′= Γ[n 7→ℓ]: This follows

from T-VF as Σ |= {nℓ⊒ mκ.f} implies Σ(nℓ) ≥ Σ(mκ.f) under Definition 4. Thus, we have
(Σ, Γ[n 7→ℓ]) ≈ ∆[n 7→∆(m)].

• Case “
q
n.f = m

yℓ
B” where Γ(n) = κ, Γ(m) = λ, v = ∆(n)[f 7→∆(m)], ∆′= ∆[n 7→v] and

Γ′= Γ[n 7→ℓ]: This follows from T-FV as Σ |= {nℓ⊒ nκ[f 7→mλ]} implies Σ(nℓ) ≥ Σ(nκ[f 7→mλ])
under Definition 4. Furthermore, Σ(nκ) |= ∆(n) and Σ(mλ) |= ∆(m) by construction and,
thus, (Σ, Γ[n 7→ℓ]) ≈ ∆[n 7→v].

• Case “
q
return n

yℓ
B”: This follows immediately from R-RV because it does not produce a

successor state ⟨∆′, B′⟩.

• Case “while
q
n < m

yℓ{B1} B2” where ∆′= ∆ and Γ′= Γ[n 7→ ℓ]: This follows from T-WHILE
as Σ |={nℓ⊒ nκ⊔ nλ} implies Σ(nℓ) ≥ Σ(nκ) ∨ Σ(nλ) which, by S-UNION2, gives Σ(nℓ) ≥ Σ(nκ)
and Σ(nℓ) ≥ Σ(nλ). Thus, Σ(nℓ) ≥ ∆(n) regardless of the whether the previous statement was
from before the loop or from around the loop and, hence, (Σ, Γ[n 7→ℓ]) ≈ ∆.

18

5 Extensions
We now provide some additional discussion of our constraint-based formulation of FT and highlight
a number of ways in which it could be extended.

5.1 Effective Records
One of the less intuitive aspects of our definition of a typing (i.e. Definition 4) is the support for
unions of records. Henceforth, we refer to these as effective records. To illustrate their value, con-
sider the following:

int f(int x, int y) {
z = {f:1, g:2}1

while x < y2 { z = {f:3, h:4}3 }
return z.f4

}

At the return statement, variable z has type {int f, int g} ∨ {int f, int h}. Therefore, one
would expect z.f to be type safe, given that both options have the required field f. And, indeed,
this is a valid FT program under Definition 4 and Figure 4.

5.2 Arrays
Extending FT to support array types is fairly straightforward. Suppose we extend our language of
types to include a type [T], which represents an array of zero or more elements of type T. The
following illustrates how this might work:

[any] f([int] arr, any val, int n, int m) {
while n < m1 { arr[n] = val2 }
return arr3

}

Here, the type of arr at the return statement is [any]. This reflects the fact that, although arr had
type [int] on entry, it may now hold one or more values of type any. Extending FT to support
arrays, such as this, is fairly straightforward. It differs from records only in that, when an element is
assigned, we cannot overwrite the element type with the assigned type (as we did for fields). This is
because we cannot easily tell whether all elements of the array are overwritten with the new type.

5.3 Type Tests
As discussed in the introduction, flow typing can also be used to retype variables as a result of
conditionals. The following illustrates how this might work in FT:

int f(any x):
if x is {int field}1:

r = x.field2

else:
r = 03

return r4

Here, variable x is retyped on the true branch to {int field}. At the same time, it is retyped
to ¬{int field} on the false branch (read as the type not {int field}). Thus, extending FT to
support type tests requires two additional things: an if-else statement to host the type test; and,
a notion of negation types of the form ¬T. A more detailed discussion of this problem can be found
in our earlier work [25].

19

5.4 References
Some notion of reference type would be a useful extension to FT. However, if retyping through ref-
erences is permitted, care must be taken to avoid unsoundness. For example, consider the following
(where ref<T> represents a reference to a value of type T):

ref<any> f(ref<int> r, any x):

*r = x1;
return r2

The above program is unsafe because callers to f() may retain their own copy of the reference r.
The following illustrates such a caller:

int g(ref<int> r1, any x):
r2 = f(r1,x)1

return *r1
2 // unsafe

The declared type of r1 suggests that dereferencing it will give an int. However, if we permitted
the above definition of f(ref<int>,int), the value referenced by r1 would have type any at
the return statement — thereby invalidating our assumption. In order to enable retyping through
references, one can exploit uniqueness types (e.g. [62, 63, 64]). These guarantee that the value
referenced is not shared with others and, hence, that one can safely update its type.

20

6 Related Work
The first, and most widely used type inference system was developed by Hindley [6] and later in-
dependently by Milner [7]. Since then, numerous systems have been developed for object-oriented
languages (e.g. [30, 31, 32, 33, 65, 66, 34, 67, 68]). These, almost exclusively, assume the origi-
nal program is completely untyped and employ set constraints (see [54, 55]) as the mechanism for
inferring types. As such, they address a somewhat different problem to that studied here. To per-
form type inference, such systems generate constraints from the program text, formulate them as
a directed graph and solve them using an algorithm similar to transitive closure. When the entire
program is untyped, type inference must proceed across method calls (known as interprocedural
analysis) and this necessitates knowledge of the program’s call graph (in the case of languages with
dynamic dispatch, this must be approximated). Typically, a constraint graph representing the entire
program is held in memory at once, making these approaches somewhat unsuited to separate com-
pilation [30]. Such systems also share a strong relationship with constraint-based program analyses
(e.g. [55, 69, 58, 70]), such as alias or points-to analysis (e.g. [71, 72, 73, 74]). Finally, the language
of constraints presented in §4 is similar to that used in systems such as these. However, the key
novelty of our approach lies in the mechanism for extracting recursive types from constraints via
elimination and substitution.

Our earlier work on flow-typing [25] considers the problem of handling type tests in a sound and
complete manner (recall, we briefly discussed this problem in §5.3). The aim is to automatically
retype variables as a result of runtime type tests. Consider a variable x which has type T1 and is the
subject of a type test, such as x instanceof T2. It should follow that variable x automatically has
type T1 ∧ T2 on the true branch (i.e. the intersection of its original type and the tested type). The key
challenge is that, on the false branch, it should have type T1 ∧ ¬T2 (i.e. the intersection of its original
type and everything except the tested type). Developing a type system which supports union, inter-
section and negation types which is both sound and complete is a significant algorithmic challenge,
and our solution relies on a carefully constructed normal form representation of types. Note that the
system presented in [25] differs from that presented here, as it does not support recursive types at all
and, hence, there is no termination problem to be addressed.

Palsberg and O’Keefe consider the problem of finding a type system equivalent to a constraint-
based safety analysis [75]. They find that a type system previously studied by Amadio and Cardelli
(which includes subtyping and recursive types [36]) accepts the same programs as the particular
safety analysis they examined. Their work shows some similarity with the problem studied in this
paper. In particular, Palsberg and O’Keefe develop a constraint-based type inference where typings
are generated by solving constraints and extracting a least solution for each variable. However, their
type system does not include union types and this limits the possible constraint forms needing to be
considered. As such, the problem of extracting a typing from a constraint set is strictly simpler in
their system than that studied here.

The work of Guha et al. focuses on flow-sensitive type checking for JavaScript [4]. This assumes
programmer annotations are given for parameters, and operates in two phases: first, a flow analysis
inserts special runtime checks; second, a standard (i.e. flow-insensitive) type checker operates on the
modified AST. The system retypes variables as a result of runtime type tests, although only simple
forms are permitted. Recursive data types are not supported, although structural subtyping would be
a natural fit here; furthermore, the system assumes sequential execution (true of JavaScript), since
object fields can be retyped.

Tobin-Hochstadt and Felleisen consider the problem of typing previously untyped Racket (aka
Scheme) programs and develop a technique called occurrence typing [20]. Their system will retype
a variable within an expression dominated by a type test. Like Whiley, they employ union types
to increase the range of possible values from the untyped world which can be described; however,
they fall short of using full structural types for capturing arbitrary structure. Furthermore, in Racket,
certain forms of aliasing are possible, and this restricts the points at which occurrence typing is
applicable.

The earlier work of Aiken et al. is similar to that of Tobin-Hochstadt and Felleisen [76]. This
operates on a function language with single-assignment semantics. They support more expressive
types, but do not consider recursive structural types. Furthermore, instead of type checking directly
on the AST, conditional set constraints are generated and solved. Following the soft typing disci-

21

pline, their approach is to insert runtime checks at points which cannot be shown type safe.
The Java Bytecode Verifier employs flow typing [28]. Since locals and stack laocations are

untyped in Java Bytecode, it must infer their types to ensure type safety. A dataflow analysis is used
to do this [29], although one issue is that the Java class hierarchy does not form a join semi-lattice.
To deal with this, the bytecode verifier uses a simplified least upper bound operator which ignores
interfaces altogether, instead relying on runtime checks to catch type errors (see e.g. [29]). The
work of Male et al. extends bytecode verification to check @NonNull types [12]. This additionally
permits variables to be retyped by conditionals such as x != null.

Gagnon et al. present a technique for converting Java Bytecode into an intermediate represen-
tation with a single static type for each variable [77]. Key to this is the ability to infer static types
for the local variables and stack locations used in the bytecode. Since local variables are untyped
in Java bytecode, this is not always possible as they can — and often do — have different types at
different points; in such situations, a variable is split as necessary into multiple variables each with
a different type.

Bierman et al. formalise the type inference mechanism to be included in C# 3.0, the latest
version of the C# language [2]. This employs a very different technique known as bidirectional
type checking, which was first developed for System F by Pierce and Turner [78]. This approach is
suitable for C# 3.0 because variables cannot have different types at different program points.

Information Flow Analysis is the problem of tracking the flow of information, usually to restrict
certain flows for security reasons. Hunt and Sands use dataflow-based flow typing for tracking
information flow [9]. Their system is presented in the context of a simple While language not
dissimilar to our dataflow formulation. Russo et al. use an extended version of this system to
compare dynamic and static approaches [15]. They demonstrate that a purely dynamic system will
reject programs that are considered type-safe under the Hunt and Sands system. JFlow extends
Java with statically checked flow annotations which are flow-insensitive [14]. Finally, Chugh et al.
developed a constraint-based (flow-insensitive) information flow analysis of JavaScript [79].

7 Conclusion
We have presented a small calculus, FT, for reasoning about flow typing systems which is moti-
vated from our experiences developing the Whiley language [23, 24, 25, 26]. This characterises
a flow-typing problem which is not well-suited to being solved with a dataflow analysis. This is
because the dataflow formulation requires a fix-point computation over typing environments which,
unfortunately, may not terminate. We then presented a novel constraint-based formulation of typing
which is guaranteed to terminate. This provides a foundation for others developing such flow typing
systems. Finally, whilst our language of constraints is similar to previous constraint-based type in-
ference systems (e.g. [30, 31, 32, 33, 34]), the key novelty of our approach lies in a mechanism for
extracting recursive types from constraints via elimination and substitution.

In the future, we would like to extend our type extraction mechanism to cover all cases (recall
from §4.4 that there are cases where extraction fails). We speculate this can be achieved by ensuring
that the variable elimination procedure eagerly resolves recursive constraints when they arise.

Acknowledgements. This work is supported by the Marsden Fund, administered by the Royal
Society of New Zealand.

References
[1] The scala programming language. http://lamp.epfl.ch/scala/.

[2] G. Bierman, E. Meijer, and M. Torgersen. Lost in translation: formalizing proposed extensions
to C#. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 479–498, 2007.

[3] D. Remy and J. Vouillon. Objective ML: An effective object-oriented extension to ML. TOPS,
4(1):27–50, 1998.

22

[4] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state using flow analysis.
In Proceedings of the European Symposium on Programming (ESOP), pages 256–275, 2011.

[5] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a step towards reconciling
dynamically and statically typed OO languages. In Proceedings of the Dynamic Languages
Symposium (DLS), pages 53–64. ACM Press, 2007.

[6] J. R. Hindley. The principal type-scheme of an object in combinatory logic. Transations of the
AMS, 146:29–60, 1969.

[7] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, 1978.

[8] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In Proceed-
ings of the ACM Conference on Programming Language Design and Implementation (PLDI),
pages 1–12. ACM Press, 2002.

[9] Sebastian Hunt and David Sands. On flow-sensitive security types. In Proceedings of the
ACM Symposium on Principles of Programming Languages (POPL), pages 79–90. ACM Press,
2006.

[10] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In Proceedings of the ACM Symposium
on Principles of Programming Languages (POPL), pages 232–245. ACM Press, 1993.

[11] Torbjörn Ekman and Görel Hedin. Pluggable checking and inferencing of non-null types for
Java. Journal of Object Technology, 6(9):455–475, 2007.

[12] C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Java bytecode verification for @NonNull
types. In Proceedings of the Conference of Compiler Construction (CC), pages 229–244, 2008.

[13] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-oriented
language. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), 2003.

[14] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Proceedings of
the ACM Symposium on Principles of Programming Languages (POPL), pages 228–241, 1999.

[15] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Proc. CSF,
pages 186–199, 2010.

[16] D. J. Pearce. JPure: a modular purity system for Java. In Proceedings of the Conference of
Compiler Construction (CC), volume 6601 of LNCS, pages 104–123, 2011.

[17] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers. In
Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI), pages 192–203. ACM Press, 1999.

[18] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A framework for opti-
mizing Java using attributes. In Proceedings of the Conference of Compiler Construction (CC),
2001.

[19] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing plug-
gable type systems. In Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), 2006.

[20] Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In Pro-
ceedings of the International Conference on Functional Programming (ICFP), pages 117–128,
2010.

[21] Johnni Winther. Guarded type promotion: eliminating redundant casts in Java. In Proceedings
of the Workshop on Formal Techniques for Java-like Programs, pages 6:1–6:8. ACM Press,
2011.

23

[22] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed scheme.
In Proceedings of the ACM Symposium on Principles of Programming Languages (POPL),
pages 395–406, 2008.

[23] The Whiley programming language, http://whiley.org.

[24] D. J.Pearce and J. Noble. Implementing a language with flow-sensitive and structural typing
on the JVM. In Proc. BYTECODE, 2011.

[25] D. J. Pearce. Sound and complete flow typing with unions, intersections and negations. In
Proc. VMCAI, page (to appear), 2013.

[26] D. J. Pearce and J. Noble. Structural and flow-sensitive types for Whiley. Technical Report
ECSTR10-23, Victoria University of Wellington, 2010.

[27] The Groovy programming language. http://groovy.codehaus.org/.

[28] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison Wesley,
second edition, 1999.

[29] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated
Reasoning, 30(3/4):235–269, 2003.

[30] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In Proceedings of
the ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 146–161. ACM Press, 1991.

[31] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type inference. In
Proc. FPCA, pages 31–41. ACM Press, 1993.

[32] T. Wang and S.F. Smith. Precise constraint-based type inference for Java. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), pages 99–117. Springer-
Verlag, 2001.

[33] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for javascript. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP), pages
428–452, 2005.

[34] John Plevyak and Andrew A. Chien. Precise concrete type inference for object-oriented lan-
guages. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 324–340. ACM Press, 1994.

[35] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[36] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15:575–631, 1993.

[37] Flemming M. Damm. Subtyping with union types, intersection types and recursive types.
volume 789 of LNCS, pages 687–706. 1994.

[38] Castagna and Frisch. A gentle introduction to semantic subtyping. In Proceedings of the
ICALP, pages 198–199, 2005.

[39] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Dealing set-theoretically with
function, union, intersection, and negation types. Journal of the ACM, 55(4):19:1–19:64, 2008.

[40] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive subtyping. In
Proceedings of the ACM Symposium on Principles of Programming Languages (POPL), pages
419–428, 1993.

[41] Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Recursive subtyping revealed.
Journal of Functional Programming, 12(6):511–548, 2002.

24

[42] D. Ancona and G. Lagorio. Complete coinductive subtyping for abstract compilation of object-
oriented languages. In Proceedings of the Workshop on Formal Techniques for Java-like Pro-
grams, pages 1:1–1:7. ACM Press, 2010.

[43] D. Ancona and G. Lagorio. Idealized coinductive type systems for imperative object-oriented
programs. RAIRO - Theoretical Informatics and Applications, 45(1):3–33, 2011.

[44] Davide Ancona and Elena Zucca. Corecursive featherweight java. In Proceedings of the Work-
shop on Formal Techniques for Java-like Programs, 2012.

[45] Flemming Nielson, Hanne R. Nielson, and Chris L. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[46] J. Gosling, G. Steele B. Joy, and Gilad Bracha. The Java Language Specification, 3rd Edition.
Prentice Hall, 2005.

[47] Susan Horwitz, Alan J. Demers, and Tim Teitelbaum. An efficient general iterative algorithm
for dataflow analysis. Acta Informatica, 24(6):679–694, 1987.

[48] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. FMPA, pages
128–141, 1993.

[49] Jason R. C. Patterson. Accurate static branch prediction by value range propagation. In
Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI), pages 67–78, 1995.

[50] Tsuneo Nakanishi, Kazuki Joe, Constantine D. Polychronopoulos, and Akira Fukuda. The
modulo interval: A simple and practical representation for program analysis. In Proceedings
of the International Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 91–96. IEEE Computer Society Press, 1999.

[51] Tsuneo Nakanishi and Akira Fukuda. Value range analysis with modulo interval arithmetic. In
Proceedings of the Workshop on Software and Compilers for Embedded Systems (SCOPES),
2001.

[52] Suan Hsi Yong and Susan Horwitz. Pointer-range analysis. In Proceedings of the Static Anal-
ysis Symposium (SAS), volume 3148 of LNCS, pages 133–148. Springer-Verlag, 2004.

[53] Su and Wagner. A class of polynomially solvable range constraints for interval analysis without
widenings. Theoretical Computer Science, 345(1):122–138, 2005.

[54] Alexander Aiken and Edward L. Wimmers. Solving systems of set constraints. In Proceedings
of LICS, pages 329–340, 1992.

[55] Nevin Heintze. Set-based analysis of ML programs. In Proc. LFP, pages 306–317. ACM Press,
1994.

[56] Alexander Aiken. Set constraints: Results, applications, and future directions. In Proceedings
of the workshop on Principles and Practice of Constraint Programming (PPCP), volume 874.
Springer-Verlag, 1994.

[57] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. Flow-insensitive points-to anal-
ysis with term and set constraints. Technical Report CSD-97-964, University of California,
Berkeley, 1997.

[58] Alexander Aiken. Introduction to set constraint-based program analysis. Science of Computer
Programming, 35(2–3):79–111, 1999.

[59] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark K. Wegman, and F. Kenneth Zadeck. An
efficient method of computing static single assignment form. In Proceedings of the ACM Sym-
posium on Principles of Programming Languages (POPL), pages 25–35. ACM Press, 1989.

25

[60] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, 1991.

[61] Jong-Deok Choi, Vivek Sarkar, and Edith Schonberg. Incremental computation of static single
assignment form. In Proceedings of the Conference of Compiler Construction (CC), pages
223–237. Springer-Verlag, 1996.

[62] John Boyland. Alias burying: Unique variables without destructive reads. Software — Practice
and Experience, 31(6):533–553, 2001.

[63] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for Program Understanding.
In Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), pages 311–330, 2002.

[64] Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), volume 2743 of LNCS,
pages 59–67. Springer-Verlag, 2003.

[65] N. Oxhøj, J. Palsberg, and M. Schwartzbach. Making type inference practical. In Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP), pages 329–349.
Springer-Verlag, 1992.

[66] Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
Proceedings of the conference on LISP and Functional Programming, pages 193–204. ACM
Press, 1992.

[67] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type inference for
objects. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 169–184. ACM Press, 1995.

[68] M. Furr, J.-H. An, J. Foster, and M. Hicks. Static type inference for Ruby. In Proceedings of
the Symposium on Applied Computing (SAC), pages 1859–1866. ACM Press, 2009.

[69] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken. Partial online cycle
elimination in inclusion constraint graphs. In Proceedings of the ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 85–96. ACM Press, 1998.

[70] Bjorn De Sutter, Frank Tip, and Julian Dolby. Customization of Java library classes using type
constraints and profile information. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 585–610. Springer-Verlag, 2004.

[71] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. Polymorphic versus monomorphic
flow-insensitive points-to analysis for C. In Proceedings of the Static Analysis Symposium
(SAS), pages 175–198. Springer-Verlag, 2000.

[72] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for Java using an-
notated constraints. In Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), pages 43–55. ACM Press, 2001.

[73] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Online cycle detection and difference
propagation: Applications to pointer analysis. Software Quality Journal, 12(4):309–335, 2004.

[74] Marc Berndl, Ondřej Lhoták, Fneg Qian, Laurie J. Hendren, and Navindra Umanee. Points-
to analysis using BDDs. In Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI), pages 196–207. ACM Press, 2003.

[75] Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis. ACM Transac-
tions on Programming Languages and Systems, 17(4):576–599, 1995.

26

[76] Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with condi-
tional types. In Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL), pages 163–173, 1994.

[77] E. Gagnon, L. Hendren, and G. Marceau. Efficient inference of static types for java bytecode.
In Proceedings of the Static Analysis Symposium (SAS), pages 199–219, 2000.

[78] B. Pierce and D. Turner. Local type inference. ACM Transactions on Programming Languages
and Systems, 22(1):1–44, 2000.

[79] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for javascript. In
Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI), pages 50–62, 2009.

27

