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ABSTRACT

In order to evaluate software performance and find regressions, many developers use
automated performance tests. However, the test results often contain a certain amount of
noise that is not caused by actual performance changes in the programs. They are instead
caused by external factors like operating system decisions or unexpected non-determinisms
inside the programs. This makes interpreting the test results hard since results that differ
from previous results cannot easily be attributed to either genuine changes or noise.

In this paper we use Mozilla Firefox as an example to try to find the causes for this
performance variance, develop ways to reduce the noise and present a statistical technique
that makes identifying genuine performance changes more reliable.

Our results show that a significant amount of noise is caused by memory randomization
and other external factors, that there is variance in Firefox internals that does not seem
to be correlated with test result variance, and that our suggested statistical forecasting
technique can give more reliable detection of genuine performance changes than the one
currently in use by Mozilla.
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1 INTRODUCTION

Performance is an important aspect of almost every field of computer science, be it
development of efficient algorithms, compiler optimizations, or processor speed-ups via
ever smaller transistors. This is apparent even in everyday computer usage – no one likes
using sluggish programs. But the impact of performance changes can be more far-reaching
than that: it can enable novel applications of a program that would not have been possible
without significant performance gains.

A recent example of this is the huge growth of the so-called “Web 2.0”. This collection
of techniques relies heavily on JavaScript to build applications in websites that are as easy
and fast to use as local applications. The bottleneck here is obvious: the performance of the
applications depends on how fast the browser is able to execute the JavaScript code. This
has led to a speed race in recent years, especially the last one, with each browser vendor
trying to outperform the competition.

A competition like that poses a problem for developers, though. Speed is not the only
important aspect of a browser, features like security, extensibility and support for new web
standards are at least as important. But more code can negatively impact the speed of an
application: start-up becomes slower due to more data that needs to be loaded, the number
of conditional tests increases, and increasingly complex code can make it less than obvious
if a simple change might have a serious performance impact due to unforeseen side effects.

It is therefore important to determine as soon as possible whether performance changes
have taken place. This is traditionally being done with automated tests. If a regression
is detected an investigation has to be made: Is it caused by the fulfilment of a different
requirement that is more important? Then it cannot be avoided. But if it is an unexpected
side effect then this change could be reverted until a better solution without side effects is
found. There is one important catch with this technique, however: the performance data has
to be reliable. In this case that means it should reflect the actual performance as accurately
as possible without any noise. Unfortunately this is much more difficult than it might seem.
Even though computers are deterministic at heart, there are countless factors that can make
higher-level operations non-deterministic enough to have a significant impact on these
performance measurements, making the detection of genuine changes very challenging.

1.1 CONTRIBUTIONS

This work tries to determine what exactly those factors are that cause non-determinism
and thus variation in the performance measurements, and how they can be reduced as
much as possible, with the ultimate goal of being able to distinguish between noise and
real changes for new performance test results. Mozilla Firefox is used as a case study since
as an Open Source project it can be studied in-depth. This will hopefully significantly
improve the value of these measurements and enable developers to concentrate on real
regressions instead of wasting time on non-existent ones.

In concrete terms, we present:

• An analysis of factors that are outside of the control, i.e. external to the program of
interest, and how it impacts the performance variance, with suggestions on how to
minimize these factors,

• an analysis of some of the internal workings of Firefox in particular and their relation-
ship with performance variance, and
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• a statistical technique that would allow automated test analyses to better evaluate
whether there has been a genuine change in performance recently, i.e. one that has
not been caused by noise.

1.2 OUTLINE

The rest of this paper is organized as follows. Chapter 2 gives an overview of the problem
using an example produced with the official Firefox test framework. Chapter 3 looks
at external factors that can influence the performance variance like multitasking and
hard drive access. Chapter 4 looks at what is happening inside of Firefox while a test is
running and how these internal factors might have an effect on performance variance.
Chapter 5 presents a statistical technique that improves on the current capability of detecting
genuine performance changes that are not caused by noise. Chapter 6 gives an overview of
related work done in this area. Finally, Chapter 7 summarizes our results and gives some
suggestions for future work.
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2 BACKGROUND

This chapter will give an overview of Mozilla Firefox and the Talos performance test
suite that Mozilla employs to detect performance changes, namely improvements and
regressions, in new code. It will also give an example of the problem of variance in this test
suite and list previous work done in the area.

2.1 MOZILLA AND MOZILLA FIREFOX

The Mozilla Foundation1 is a global non-profit organization with its headquarters in the
usa. Its mission is to “promote openness [. . . ] on the web”2 and make sure that it is
accessible for everyone using Free and Open Source tools3,4.

The main means of pursuing this goal is by having The Mozilla Corporation5, a
subsidiary of the Mozilla Foundation, develop the Firefox web browser and releasing it as
Free Software6. Firefox is a modern web browser that supports a wide range of web-related
standards like html5, css in various versions, JavaScript, and a lot more. The Firefox
source code is kept in a publicly accessible Mercurial7 version control repository8. For this
work version 5.0 of Firefox was used which was the current version at the time when we
started collecting the final data.

2.2 THE TALOS TEST SUITE

The Talos test suite (named after the bronze giant from Greek legend that protected Crete’s
coasts) is a collection of 17 different tests that evaluate the performance of various aspects
of Firefox. A list of those tests is given in Table 2.1. One thing to note here is that there are
two types of results for the individual tests: most of them measure the milliseconds it takes
for a specific action to complete, so the lower the result the better, but the tests that are part
of the dromaeo framework measure the number of times a specific test can be run during
one second, so here a higher number is better.

The purpose of this test suite is to evaluate the performance of a specific Firefox build,
meaning the result of the compilation of a specific version of the source code. As new code
is checked in into the Mercurial repository, various actions (see below) are performed on it
in order to assess the quality of the new code. Since a complete run of the whole process
takes about 4 hours or more (Stoica, 2010), a build infrastructure consisting of about 1000
machines, mostly Mac Minis (Gasparnian, 2010), is used to carry out those actions. In a
slightly simplified overview this process consists of three parts:

1. The new code is compiled on a range of different operating systems, namely Windows,
Mac OS X and Linux. This is both to ensure that the current version actually cleanly
compiles on all of these operating systems and to have a working build for the next
two parts.

1http://www.mozilla.org/
2http://www.mozilla.org/about/mission.html
3http://www.mozilla.org/about/
4http://www.mozilla.org/about/manifesto.en.html
5http://www.mozilla.com/
6http://www.mozilla.org/MPL/license-policy.html
7http://mercurial.selenic.com/
8http://hg.mozilla.org/
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Table 2.1
The various performance tests employed by Mozilla

Test name Test subject Unit

a11y Accessibility features Milliseconds

dromaeo_basics Basic JavaScript operations like array manip-
ulation and string handling

Runs/second

dromaeo_css css (Cascading Style Sheets) manipulation
with JavaScript

Runs/second

dromaeo_dom dom (Document Object Model) node manip-
ulation with JavaScript

Runs/second

dromaeo_jslib dom node manipulation using the ‘jQuery’
and ‘Prototype’ JavaScript libraries

Runs/second

dromaeo_sunspider Various JavaScript tests from the ‘SunSpi-
der’ WebKit test suite (Stachowiak, 2007),
integrated into the ‘Dromaeo’ suite

Runs/second

dromaeo_v8 Various JavaScript tests from the ‘V8’
Google Chrome test suite (Google Inc.,
2008), integrated into the ‘Dromaeo’ suite

Runs/second

tdhtml Various tests that create animations using
JavaScript dom manipulation

Milliseconds

tgfx Some graphics operations like displaying
a large amount of text, tiled images, image
transformations and various borders

Milliseconds

tp_dist A page loading test that loads a number of
popular websites and measures the speed it
takes to render them

Milliseconds

tp_dist_shutdown The time it takes to completely shut down
the browser after the page loading test

Milliseconds

tsspider The unaltered SunSpider JavaScript bench-
mark

Milliseconds

tsvg Rendering of svg images Milliseconds

tsvg_opacity Rendering of partially-transparent svg im-
ages

Milliseconds

ts Startup time until the first page gets loaded Milliseconds

ts_shutdown Shutdown speed directly after starting up
the browser

Milliseconds

v8 The unaltered V8 JavaScript benchmark Milliseconds
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Figure 2.1: Page load speed tp_dist example sequence with data taken from graphs.mozilla.
org

2. A number of unit tests are run on the new build. This tries to ensure that the code
changes did not introduce any bugs, like for example crashing when a certain action
is performed or displaying popular pages incorrectly.

3. The Talos test suite is run on the build. This is done both to track improvements in
performance and to detect regressions.

This process of Continuous Integration (Fowler, 2006) allows for quick detection of
problems that could otherwise lead to a lengthy search for the cause and ensures a
consistent quality throughout the project.

Ideally this process would be run on every check-in into the repository. However, in
order to reduce the load on the machines used and to allow for quick fixes of mistakes in a
commit (like for example forgetting to add a file) there is a short wait period before the
build starts. If there is a new check-in during that time it will be included in the next build.

The focus of this work is on part three, the Talos performance evaluation. We will also
mostly focus on variance in unchanging code and the detection of regressions in order to
limit the scope to a manageable degree (O’Callahan, 2010).

2.3 AN ILLUSTRATIVE EXAMPLE

In the following we use the term run to refer to a single execution of the whole or part of
the Talos test suite and series to refer to a sequence of runs, usually consisting of 30 single
runs (see also Section 2.5.1).

Figure 2.1 illustrates an example series of the tp_dist part of the test suite over most
of the year 2010 on one particular machine. This test loads a number of popular web pages
and calculates the mean of the time it took to completely render them. Important to note
here is that the pages are loaded from the local hard disk, so effects like network latency
do not come into play – however, the speed and latency of the hard drive, and potentially
other external factors, can still have an effect outside the control of Firefox itself. This will
be addressed in Chapter 3.
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There are a few interesting observations to be made in this graph. One is the big drop
in August, going from about 600 to a bit over 300 and then staying there. This looks like a
clear case of a genuine change in performance, most likely due to an optimization in the
code. Another observation is about the high variance in the results during the rest of the
year. There seems to be no common trend to them, they are “all over the place”. We cannot
really tell whether those results are due to noise or real code changes. One clear candidate
for a code change happens in the middle of June, where the result fits right into the trend
that will be established later on in August. But why is it only a single result, as opposed to
the later ones? One possible explanation is that the optimization introduced a bug and was
therefore removed again until that bug was fixed, which took until August.

So now we have a plausible explanation for one of the results. But that still does not
really tell us anything about the rest. Could we apply the same heuristic that lets us
explain the big change – seeing it “sticking out” of the general trend – and use it in a more
statistically sound way to try to explain the other results? We can – to a certain degree.

The exact details of the best way to do this will be explained in Chapter 5, but let us
first have a very simple look at how we could put a number on the variance of a test suite
series. We will do this by running a base line series using a standard setup without any
special optimizations.

2.4 STATISTICS PRELIMINARIES

The Talos suite already employs a few techniques that are meant to mitigate the effect of
random variance on the test results. One of the most important is that each test is run 5-20
times, depending on the test, and the results are averaged. A statistical optimization that is
already being done is that the maximum result of these repetitions is discarded before the
average is calculated. Since in almost all cases this is the first result, which includes the
time of the file being fetched from the hard disk, it serves as a simple case of steady-state
analysis where only the results using the cache – which has relatively stable access times –
are going to be used.

As a concrete example, the tp_dist test as used in our experiments loads 26 different
pages 10 times each. Then the median of the 10 results from each page is calculated,
and finally the mean of all the different medians is presented as the final result. This
allows us to make use of the central limit theorem (Cam, 1986), which states that our results
will approximately follow a normal distribution as long as they all come from the same
distribution – in our case this means that the source code has to remain unchanged in
between runs. But as mentioned earlier we are only concerned with unchanging code
anyway so this poses no problem for us. Interesting to note is that Figure 2.1 shows in the
so-called “rug” plot on the left that even with changing code the test seems to largely follow
a normal distribution, with the exception of the large jump in August which essentially
split the distribution into two independent ones.

Normal distributions make it easier to apply various statistical analyses on data, but it
is not strictly required in our case. Still, checking for normality of the distribution can give
valuable insights about the nature of the variance.

Beginning with this chapter we will be using various statistical techniques to evaluate
our results in a statistically valid way. This usually consists of having a null hypothesis,
which is the “conservative” view that the results are in line with our current theory and do
not indicate that the current theory might be wrong. What exactly this means for a specific
test will be explained in the relevant sections.

The other part of these techniques is the p-value. This is the probability that the null
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hypothesis can not be rejected. In other words, it is the probability of getting the results we
are analysing under the assumption that the null hypothesis is true. If this probability is
lower than a previously chosen significance level then the results are said to be statistically
significant. Traditionally a significance level of 0.05 is the most common one for these kinds
of analyses, and that is what we will be using here.

2.5 THE BASE LINE TEST

2.5.1 experimental setup

For this and all the following experiments in this paper we used a Dell Optiplex 780
computer with an Intel Core 2 Duo 3.0 GHz processor and 4 GB of ram running Ubuntu
Linux 10.04 with Kernel 2.6.32. To start with we ran the whole test suite 30 times back-
to-back as a series using the same executable in an idle gnome desktop without any
special adjustments of our own. Using the same executable guarantees that changes in
the performance cannot be caused by code changes and are thus solely attributable to
noise. The only adjustments that we made were two techniques used on the official Talos
machines9:

• Replace the /dev/random device, which provides true random numbers, with the
pseudo-random number generator /dev/urandom.

• Disable cpu frequency scaling and fix the processors at their highest frequency. This
prevents variance introduced by switching between the possible frequencies and the
case where a processor decides to run at different frequencies during repeated runs
of the same test for some reason.

The number 30 for the runs was chosen as a compromise between different requirements.
The first was that in order for the central limit theorem to be applicable the common rule
of thumb is that at least 30 samples are needed. In addition a higher number of runs
would allow us to determine whether the results would settle in some kind of steady state
where the variance is much lower than between the first few runs. Finally, a practical
requirement prevented us from choosing a significantly higher number: since every test
run took about one hour to complete on our machine we had to settle on a number that
would allow us to reasonably experiment with many different parameters without having
to wait unreasonably long for the result. In addition initial tests with 50 runs showed no
meaningful difference between the numbers. Thus 30 was chosen as a suitable compromise.

2.5.2 results

Figure 2.2 shows the results of the tp_dist page loading test, and Figure 2.3 shows the
results of the a11y accessibility test – both serve as good examples for the complete test
suite results. Here we have – as expected – no drastic outliers, but we do still have a
non-trivial amount of variance. Looking at the rug plot it seems that the tp_dist test
does not follow a normal distribution, the a11y on the other hand looks better. There are
two ways to verify these suspicions: quantile-quantile (Q-Q) plots and the Shapiro-Wilk test
(Shapiro and Wilk, 1965).

Figure 2.4 shows the Q-Q plots for our two example tests. They are interpreted roughly
in the following way: if the data points closely follow the line the sample is said to follow a

9https://wiki.mozilla.org/ReferencePlatforms/Test/FedoraLinux
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Figure 2.2: tp_dist results of 30 runs

normal distribution. The a11y test supports that, except for two outliers the points follow
the line very well. However, as already suspected, this is not true for the tp_dist test –
most of the points are quite far away from the line. It is interesting to note, though, that
there seem to be two different linear trends in the data points – one in the points near
the bottom of the graph and one near the top right, almost as if there are two different
influences guiding them.

For a technique that needs less interpretation we can use the Shapiro-Wilk test. It
analyses the sample and determines whether the null hypothesis of the distribution being
normal can be rejected or not. The resulting p-value for the a11y test is 0.135, implying that
the normality of the sample cannot be rejected if we use the standard significance level of
0.05. For the tp_dist test however, p is < 0.01, so we have the affirmation that the sample
is most likely not normal.

Table 2.2 shows a few properties of the results for the complete test suite. As a typical
statistical measure we included the standard deviation and the coefficient of variation
(CoV), which is simply the standard deviation divided by the absolute value of the mean
for easier comparison between different tests. The standard deviation shows us that, indeed,
the variance for some of the tests is quite high. The general idea here is that we want to
be able to detect regressions that are as small as 0.5 % (O’Callahan, 2010), so it should be
possible to analyse the results in a way so that we can distinguish between genuine changes
and noise at this level of precision.

Our first approach in this chapter is to simply look at the maximum difference between
all of the values in our series taken as a percentage of the mean, similar to Georges et al.
(2007), Mytkowicz et al. (2009) and Alameldeen and Wood (2003). In other words we take
the difference between the highest and the lowest value in our series and divide it by the
mean. If a new result would increase this value, it would be assumed to not be noise.
The result of this analysis can be seen in Table 2.2. We can see that almost none of the
tests are anywhere near our desired accuracy, so using this method would give us no
useful information. But what if we use a slightly different method? We could measure the
difference from the mean instead of between the highest and lowest value. Checking our
table again again we can see that the values in this case do look better, but they are still too
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Figure 2.3: a11y results of 30 runs

Table 2.2
Results of the base line test

Max diff (%)1

Test name StdDev CoV2 Absolute To mean p-value

a11y 2.23 0.69 3.38 2.08 0.135
dromaeo_basics 4.41 0.53 2.57 1.62 0.064
dromaeo_css 11.36 0.30 1.39 0.88 0.135
dromaeo_dom 1.02 0.41 1.99 1.14 0.338
dromaeo_jslib 0.53 0.30 1.19 0.60 0.661
dromaeo_sunspider 5.65 0.54 2.09 1.16 0.017
dromaeo_v8 2.02 0.86 3.03 1.77 0.006
tdhtml 0.94 0.33 1.31 0.73 0.156
tgfx 0.80 5.68 25.60 18.88 < 0.001
tp_dist 1.77 1.16 4.42 3.30 < 0.001
tp_dist_shutdown 27.09 5.14 16.51 8.72 0.080
ts 2.27 0.59 2.45 1.66 0.001
ts_shutdown 7.28 2.00 6.88 3.44 0.410
tsspider 0.11 1.15 4.04 2.57 0.014
tsvg 1.43 0.04 0.17 0.10 0.267
tsvg_opacity 0.62 0.74 3.56 2.02 0.055
v8 0.11 1.42 4.31 3.59 < 0.001

1Difference between highest and lowest values: (highest − lowest)/mean ∗ 100
2Coefficient of variation: StdDev

mean
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far away from being actually useful.
An additional problem with the two techniques just explained is that they do not

account for significant changes in the performance. For example, in a situation similar to
that in Figure 2.1 computing the maximum difference or the difference from the global
mean would lead to highly unreliable results due to the big, genuine changes in June and
August – since most changes, both other genuine ones and those caused by noise should
usually be far smaller than that they will remain completely undetected. So our simple
approach is clearly not sufficient.

Chapter 5 will pursue more sophisticated methods to try to address these concerns.
However, even with better statistical methods it will be challenging to reach our goal – the
noise is simply too much. Therefore in the next two chapters we will first have a look at the
physical causes for the noise and try to reduce the noise itself as much as possible before
we continue with our statistical analysis.

Before we go on with our analysis there is one important thing to note. Creating
an environment that is as noise-free as possible will necessarily result in a somewhat
artificial setup, one that may not reflect the environments that Firefox is usually run in
on users’ computers in an entirely accurate way. However, trying to account for all the
possible combinations of factors that may be present on “normal” computers is essentially
impossible. This means that certain exceptional setups that could result in degraded
performance may stay undetected, but our investigation of the “clean” case should result
in an overall improvement in the vast majority of cases.
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3 ELIMINATING EXTERNAL FACTORS

In this chapter we will deal with eliminating factors that are outside the influence of Firefox
itself. For example, since modern operating systems allow multitasking there will usually
be several programs running concurrently at any one time – both user-level applications
like file managers, word processors and the like, and system-level services that are required
for various maintenance tasks. The operating system’s job is to manage these programs
in a way that is transparent to them, so the programs have only very limited knowledge
about how exactly their tasks are executed. Thus depending on the other things going on in
the system a program will most likely be executed in subtly different ways each time it
performs a task, potentially leading to measurable performance differences. A description
of the most important of these system-level issues and how to eliminate their interference
follows.

3.1 OVERVIEW OF EXTERNAL FACTORS

3.1.1 multitasking

As mentioned above, modern operating systems have many programs running at the
same time. At least that is the impression that a user of those systems gets – the reality is
significantly more complicated.

Processors are strictly serial systems, that is they can only do one thing at a time. This
is clearly at odds with the requirement of running several programs at the same time, i.e.
with multitasking. The solution that modern operating systems use is to give the appearance
of the programs being executed concurrently by switching between them very quickly in a
way that is completely transparent to the programs.

The way programs are actually executed is by running them as processes. A process is
basically a running representation of a program with its own variables, program counter
and registers. Tanenbaum (2001) gives the following analogy about the relationship between
programs and processes: imagine the program being a cake recipe, the input being the
ingredients, and the output being the cake. Then the person baking the cake is the processor,
and the process is the whole activity of the person baking the cake using the recipe and
the ingredients. Multitasking in this analogy could be explained as the person being
interrupted by another person with an urgent task, so that the baking has to be suspended
for some time while the other task is being attended to.

Traditionally processes are classified as either cpu-bound or Input/Output (i/o)-bound
(see for example Bovet and Cesati (2005)). cpu-bound processes do heavy computations and
thus need the cpu as often as possible, i/o-bound processes are waiting for i/o-operations
to complete most of the time and therefore have no need of the cpu until then. The scheduler
of an operating system has the job of weighing the needs of the different processes and
schedule them in a way that is both fair to all of the processes and that guarantees a
responsive system with a minimum amount of delays. On systems that support preemptive
multitasking, which is the norm today, processes can be switched at (almost) any time,
making this task much more flexible since the scheduler does not have to wait for a process
to give up the cpu voluntarily. Instead each process is assigned a specific time-slice whose
length depends on various parameters like the specific scheduler implementation and the
process priority, and when this slice runs out the process is switched out for a different
runnable process, that is a process that is not waiting for i/o. On multi-processor systems
this mechanism is essentially used for each processor independently but with a common
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pool of processes; see also Section 3.1.2. All of this happens transparently to the programs;
to them it looks like they are able to run continuously.

As useful as this mechanism is, it has various unavoidable drawbacks. The most obvious
one is probably that the more programs are trying to run at the same time, the less time
each of them gets to use in a given time interval, and the more time has to be spent on
switching between processes. The fact that many programs are waiting for i/o or other
specific events and only have to use the cpu occasionally unfortunately makes this even
worse for our case.

As a simple example let us assume that we want to measure the amount of time that
a cpu-intensive application takes to complete a specific task, for instance a complicated
calculation. To simplify the scenario we assume that all other processes are currently in
a waiting state and do not use the cpu. To do our measurements we use a function that
reports the current time or simply look at a watch before and after the calculation, which
when subtracted from each other will give us the amount of time our application took. Just
to be sure we want to do our calculation again, expecting the same result. But this time,
halfway through our calculation, a second process suddenly wakes up – for example a
virus scanner that wants to do its daily check, or even just something simple like a network
application receiving data from outside that it has to handle. So now our application has to
be switched out and will keep getting swapped with the other process until either of them
finishes. Due to this the result that we get from our simple time-keeping method will most
likely be different from the result of our first run, even though the application did exactly
the same thing and, by itself, ran for the same amount of time.

This example illustrates two things: (1) care has to be taken as to what other programs
are running during tests, and (2) using “real time” (also called wall clock time) is not the
best way to measure the performance per time interval of a specific program. Instead, a
mechanism that only measures the time the process actually ran is needed.

3.1.2 multi-processor systems

In recent years systems with more than one processor, or at least more than one processor
core, have become commonplace. This has both good and bad effects on our testing scenario.
The upside of it is that processes that use kernel-level threads (as Firefox does) can now be
split onto different processors, with in the extreme case only one process or thread running
exclusively on one cpu. This prevents interference from other processes as described above.
“Spreading out” a process in this way is possible since typical multi-processor desktop
systems normally use a shared-memory architecture. This allows threads, which all share
the same address space, to run on different processors. The only thing that will not get
shared in this case is cpu-local caches – which creates a problem for us if a thread gets
moved to a different processor, requiring the data to be fetched from the main memory
again. So if the operating systems is trying to balance processes and threads globally
and thus moves threads from our Firefox process around this could potentially lead to
additional variance. For a more detailed discussion about threads and how they are used
in Firefox see Chapter 4.

3.1.3 address-space randomization

Buffer overflows are a big issue in all non-managed programming languages. In simplified
terms a buffer overflow describes a situation where more data is written into a buffer than
fits into it, and the extraneous data then gets written into a consecutive memory region
that holds completely different data, thereby destroying it. Apart from just destroying data
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this is also a threat to the security of a system, since in some cases a carefully crafted
deliberate buffer overflow can allow an attacker to execute arbitrary commands through
this technique, for example by overwriting the return address on the stack to jump to
attacker-chosen, executable memory (Cowan et al., 2000). This is especially dangerous
nowadays where most computers are connected to the Internet and thus easily reachable
by malicious people.

However, in order for this attack to work the attacker has to know exactly what is where
in the address space of the program, since they have to overwrite specific regions with data
that will then get called from other regions. Thus many modern operating systems can
use (among others) a technique called address-space randomization (Shacham et al., 2004).
What this essentially does is making the position of the memory allocated by the program
unpredictable by randomizing it, thereby preventing the exploitation of the address space
layout for this kind of attack.

Unfortunately, for our purposes this normally very useful technique can do more harm
than good. For example, in Non-Uniform Memory Access (numa) architectures the available
memory is divided up and directly attached to the processors, with the possibility of
accessing another processor’s memory through an interconnect. This decreases the time
it takes a processor to access its own memory, but increases the time to the rest of the
memory. So depending on where the requested memory region is located the access time
can vary. In addition the randomization makes prefetching virtually impossible, increasing
page faults and cache misses1.

In addition the randomization can lead to data structures being aligned differently in
memory during different executions of the same program, again introducing variance as
observed by Mytkowicz et al. (2009) and Gu et al. (2004).

For our tests we therefore want the memory layout to be as deterministic as possible.

3.1.4 hard disk access

Running Firefox with the Talos test suite involves accessing the hard disk at two important
points: when loading the program and the files needed for the tests, and when writing
the results to log files. Hard disk access is however both significantly slower than ram
access and much more prone to variance. This is mainly for two reasons: (1) hard disks
have to be accessed sequentially, which makes the actual position of data on them much
more important than for random-access memory and can lead to significant seek times,
and (2) hard drives can be put into a suspended mode that they then have to be woken up
from, which can take up to several seconds.

3.1.5 other factors

Other factors that can play a role are the unix environment size and linking order of the
program as investigated by Mytkowicz et al. (2009). In our case we worked on the same
executables using the same environment and so those effects have not been studied further.
In addition hardware effects that could be caused by things like varying temperatures were
assumed to be negligible.

1See for example Drepper (2007) for more information on this topic.
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3.2 EXPERIMENTAL SETUP

Our experimental setup was designed to mitigate the effect of the issues mentioned in the
previous section on the performance variance. The goal was to evaluate how much of the
variance observed in the performance tests was actually caused by those external factors as
compared to internal ones.

The following list details the way the setup of our test machine was changed for our
experiments.

• Every process that was not absolutely needed was terminated. The previous tests
were run with an idle desktop, but here we rigorously disabled everything non-vital,
including network, to minimize the impact of scheduling effects.

• Address-space randomization was disabled in the kernel.

• The Firefox process was bound to an exclusive cpu. Since we used a dual-core system
we restricted all processes to one core and reserved the other one for Firefox so that
scheduling effects were reduced even further. It also meant that Firefox would not be
swapped between cores by the kernel.

• The test suite and the Firefox binary were copied to a ram disk and run from there.
The results and log files were also written to the ram disk. This prevented problems
with slow hard drive access as explained in Section 3.1.4.

Using this setup we ran a test series again and compared the results with our previous
results from Section 3.3. In our first experiment we tested all of these changes at the same
time instead of each individually to see how big the cumulative effect is.

3.3 RESULTS

A comparison of the results of our initial tests and the external optimization approach are
shown in Table 3.1. Overall the results show a clear improvement, most of the performance
differences have been significantly reduced. For example, the maximum difference for the
a11y test went down from 3.38 % to 0.77 % and for tsspider it went down from 4.04 % to
2.58 %.

In order to give a better visual impression of how the results differ Figures 3.1 and 3.2
show a violin plot (Hintze and Nelson, 1998) of their density functions, normalized to the
percentage of their means, with red dots indicating outliers, the white bar the inter-quartile
range similar to boxplots and the green dot the median.

One thing that is immediately obvious from the plots is that there are quite a few
differences in effectiveness between the various tests. For example, the already mentioned
improvement in the a11y test can clearly be seen, but the dromaeo tests look all very similar
to their unmodified results. In other tests like tgfx and tp_dist the modifications got rid
of all the extreme outliers. One very interesting result is that of the v8 test. The curious
shape and the result table do not really make it obvious, but after the modifications all of
the results from the test had the same value – which is exactly what our ideal for all the
tests would be. There is also another interesting observation that we can make: our table
shows us that two tests, ts and tsvg_opacity, had a rather drastic increase in the max diff
metric, but our plot makes it clear that this is due to a few extreme outliers while the rest
of the results seem to have gotten better.
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Figure 3.1: The first half of the tests after external optimizations, displayed as the percentage of
their mean
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Figure 3.2: The second half of the tests after external optimizations, displayed as the percentage of
their mean
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Ignoring variance for a moment it is also interesting to see whether our modifications
made any difference on the absolute values of the results, that is whether they made the
tests actually faster or slower. Figures 3.3 and 3.4 demonstrate that indeed there have been
some changes, in some cases even seemingly significant ones, for example in the tgfx
and tsspider tests. Interestingly enough some of the dromaeo tests seem to suffer a slight
degradation of performance, though.

3.3.1 the levene test

Now we have a nice visual representation of the differences between our two setups. But
looks can be deceiving – can we really be sure that the differences we see are actually
statistically significant, that is in more technical terms whether the two samples from our
tests come from different distributions? This is where we can make use of the Levene test for the
equality of variances (Levene, 1960; Brown and Forsythe, 1974). This test determines whether
the null hypothesis of the variances being the same can be rejected or not – similar to the
anova test which does the same thing for means. This test is robust against non-normality
of the distributions, so even though our initial analysis (see Sections 2.4 and 2.5.2) shows
that not all of the tests necessarily follow a normal distribution the test will still be valid.

Table 3.1 shows the resulting p-value after applying the Levene test to all of our test
results. Using the standard significance level of 0.05 again the results confirm our initial
observations: Almost all of the tests have a very significant difference, except for most
of the dromaeo tests and the ts (startup) and tsvg_opacity tests. The dromaeo tests
are especially interesting in that most of them are a good way away from a statistically
significant difference, and even the one test that does have one is less significant than all
the other positive tests. It seems as if the framework used in those tests is less susceptible
to external influences than the other, stand-alone tests.

3.4 ISOLATED PARAMETER TESTS

In order to determine which of our modifications had the most effect on the tests and
whether maybe some modifications have a larger impact on their own we also created
four setups where only one of our modifications was in use: (1) disabling all unnecessary
processes (plain), (2) disabling address-space randomization (norand), (3) exclusive cpu
use (exclcpu) and (4) usage of a ram disk (ramfs).

Table 3.2 shows the results of comparing the isolated parameters to the unmodified
version using the Levene test, and Figure 3.5 a few interesting examples of the distributions.
We can see that the modification that led to the highest number of significant differences
is the deactivation of memory randomization. Especially in the v8 test it was the only
modification that had any effect at all – it was solely responsible for the test always resulting
in the same value. Equally interesting is that this modification also causes two of the
dromaeo tests to become significant that were not in the cumulative case, dromaeo_jslib
and dromaeo_sunspider. That means that the other modifications seem to “muddle” the
effect somehow. Also, in the dromaeo_basics case the disabled memory randomization is
the only modification that got rid of all the outliers. Interesting to note is that in the tgfx
and especially the tp_dist case all of the modifications have an influence on the outliers,
especially in the latter test.

These finding about the memory randomization mirror the results of the papers from
Section 6.1 in that the memory layout is a major contributing factor to variance due to
aspects like alignment and prefetching, even if it cannot explain all of it.
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Figure 3.3: The first half of the tests after external optimizations, absolute result values
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Figure 3.4: The second half of the tests after external optimizations, absolute result values
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Figure 3.5: Some of the results from isolated modifications (percentage of mean)
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Table 3.2
Levene p-values for isolated modifications, compared to the unmodified setup

Test plain norand exclcpu ramfs

a11y 0.141 0.831 0.072 0.419
dromaeo_basics 0.617 0.001 0.199 0.984
dromaeo_css 0.357 0.156 0.926 0.347
dromaeo_dom 0.226 0.112 0.921 0.316
dromaeo_jslib 0.316 0.020 0.069 0.212
dromaeo_sunspider 0.915 0.028 0.401 0.743
dromaeo_v8 0.205 0.443 0.995 0.555
tdhtml 0.626 0.983 0.168 0.248
tgfx 0.018 < 0.001 0.005 0.002
tp_dist 0.006 0.041 0.039 0.038
tp_dist_shutdown 0.316 0.213 0.031 0.697
ts 0.086 0.433 0.291 0.296
ts_shutdown 0.080 0.149 0.002 0.786
tsspider 0.315 < 0.001 0.004 0.001
tsvg 0.893 0.157 0.951 0.679
tsvg_opacity 0.127 < 0.001 0.262 0.698
v8 0.851 0.008 0.550 0.857

Statistically significant values are shaded grey.

In order to test what factors exactly were responsible on a lower level we had planned
on using hardware performance counters, similar to Gu et al. (2004). Unfortunately both
performance counter libraries that are available for Linux, Rabbit2 and pcl3, have not been
updated in years and are not compatible with current Kernels or even current processors.
Recent Kernel versions have support for a new hardware performance counter framework,
but so far there are only stand-alone tools available that can make use of it. This was not
useful in our case since we are only interested in the data from the period when the actual
tests run inside of the browser, not from the whole program lifetime. With the stand-alone
tools restricting the data gathering to this period would not have been possible.

One thing to note is that even with disabled memory randomization there can still
be variance between different versions of a program if there are slight differences in the
environment or other areas as Mytkowicz et al. (2009) observed. The effect of this would
be similar as if an unchanged program were to be run with enabled randomization. The
only way to guard against that would be to run each version of the program multiple times
with enabled randomization and then take an average of the results. Note that this is not
the same thing as the “internal” test repetitions that are already being done as part of the
tests as those are all run within the same instance of a program and thus are not affected
as much by the randomization.

So was our norand modification the only one that actually resulted in a significant
change? Unfortunately, no. Table 3.2 shows that all of the modifications have at least
some significant differences, in the case of exclcpu even in tests that have no significant
difference for norand. Table 3.3 shows that there are still several significant differences

2http://www.scl.ameslab.gov/Projects/Rabbit/
3http://berrendorf.inf.h-brs.de/PCL/PCL.html
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Figure 3.6: Comparison of the cumulative modifications with only norand (percentage of mean)
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Table 3.3
Levene p-values for comparing the cumulative modifications with isolated ones

Test plain norand isolcpu ramfs

a11y < 0.001 < 0.001 < 0.001 < 0.001
dromaeo_basics 0.017 0.156 0.001 0.027
dromaeo_css 0.020 0.545 0.174 0.027
dromaeo_dom 0.420 0.006 0.462 0.603
dromaeo_jslib 0.050 0.264 0.523 0.025
dromaeo_sunspider 0.213 0.490 0.055 0.111
dromaeo_v8 < 0.001 0.343 0.048 0.194
tdhtml < 0.001 < 0.001 0.002 < 0.001
tgfx 0.008 0.905 0.064 0.302
tp_dist 0.012 < 0.001 < 0.001 < 0.001
tp_dist_shutdown < 0.001 < 0.001 < 0.001 < 0.001
ts 0.014 0.113 0.860 0.0625
ts_shutdown 0.134 0.049 0.663 < 0.001
tsspider 0.012 1.000 0.348 0.3739
tsvg 0.003 0.077 < 0.001 0.002
tsvg_opacity 0.195 0.202 0.939 0.750
v8 0.023 NaN 0.046 0.011

Statistically significant values are shaded grey.

between the isolated norand setup and the cumulative one. The fact that the number of
differences is smaller with the norand setup than with the others indicates that it is the
largest contributor, though, even if it is not responsible for all of them. Figure 3.6 shows
a few comparisons between the unmodified setup, the cumulative modifications and the
isolated norand one.

The complete plots for all of the tests are available in Appendix B.

3.5 SUGGESTIONS

Our modified test setup was a definite improvement on the default state without any
modifications. Even though the results did not quite match our goals, they still signified a
step in the right direction. Based on that we can safely assume that part of the originally
observed variance is caused by the external factors investigated in this chapter. This leads
to the following suggestions, taken from the way our experiments were set up:

1. Address space randomization should be disabled. Since the test machines should not
be directly accessible through the internet anyway this should pose no additional
security risk. As mentioned above this had the most significant effect on the variance,
so if only one of the changes could get implemented this should be it.

2. Test machines should run only the most essential processes while testing. As a
graphical application Firefox needs at least an X server and a terminal that the test
suite can be run from, but apart from that only some system services should be
needed. Not needed are things like graphical login managers, servers and cron-like
scheduling programs unless those services are necessary to interact with the test
machines or the test suite.
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3. In case the machines possess more than one cpu (core), the processes should be
segregated into the Firefox process and all the other processes on the separate cpus
to minimize scheduling interference.

4. Tests should always be run from a ram disk. Since both the test suite and the result
logs are relatively small this should pose no problem as far as ram size is concerned.
The Firefox binary along with its libraries is a bit larger, but still not really enough to
create a real problem. Note that a ram disk type should be used that will never be
swapped out to disk (on Linux the file system type ramfs is suitable for this).

Even with the significant improvements from this chapter the results do not quite match
our expectations, unfortunately: only 6 of the 17 tests have a maximum difference of less
than 0.5 %. This shows that there are other factors to consider that we do not yet have
accounted for.
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4 C P U TIME, THREADS AND EVENTS

After dealing with external influences in the last chapter we will now look at factors that
involve the internals of Firefox, specifically, as the title indicates, the time the Firefox
process actually runs and the threads and events that are used by it. This involves both
investigating how these factors are handled internally and modifying the source code of
Firefox and the test suite in an attempt to reduce the variance created by them.

4.1 THE X P C O M FRAMEWORK

The xpcom (Cross Platform Component Object Model) framework is a component object
model similar to corba1 (and is in fact partly derived from it), which has the goal of
abstracting away many implementation details to improve cross-platform compatibility. It
essentially allows to specify interfaces in a special Interface Description Language (idl)
that can then be implemented and used by a variety of languages. This is for example used
to allow JavaScript to call C++ methods and for the events that are used for the internal
work (described in more detail below). Classes that implement one of those interfaces are
called components.

4.2 C P U TIME

As already mentioned in Section 3.1.1, wall clock time is not necessarily the best way to
measure program performance since it will be influenced by other factors of the whole
system like concurrently running processes. Therefore it would make sense to only measure
the time that our program is actually running: the cpu time. This will get rid of both the
time during which other processes are running and of the time needed for context switches.
Since we are running Firefox exclusively on one processor the former should not be much
of an issue except when Firefox and some other process are trying to use the same shared
resource, but the latter will be if there is a different number of context switches between
threads.

4.2.1 experimental setup

Our setup consisted of two parts: a custom xpcom component that could report the cpu
time using a system call and a modification to the Talos framework that would use this
component instead of the wall-clock time.

The XPCOM component Our component was essentially a wrapper around the system
call clock_gettime(). This function can report the values of several timers; here we
are specifically interested in the one named clock_process_cputime_id, which
reports the time the current process has been running so far in nanoseconds.

The Talos modification The Talos framework normally records the current time before
starting to load a page and after the loading has finished using the JavaScript
Date.now() function which reports the number of milliseconds since the start of
the unix epoch (1970-01-01 00:00:00). Our modification made it use our xpcom
wrapper instead. Since only the difference between the two time points is of interest
the different reference points did not matter for us.

1http://www.corba.org/
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Unfortunately only a few tests make direct use of the time that the Talos framework
gathers in this way, namely tgfx, tp_dist, tsvg, and tsvg_opacity; most tests, especially
the JavaScript tests, do their own timing since they are not interested in the pure page
loading time. However, the results should still give an indication of whether the difference
in time-keeping leads to significant changes in principle or not.

4.2.2 results

Table 4.1 shows the results from a test series compared to the externally optimized results
from the previous chapter. The statistically significant differences are highlighted in grey
again. We can see that from the four tests that should be affected by our changes only one,
tsvg_opacity, does have a significant difference, and the variance actually seems to have
gotten worse.

Figure 4.1 again displays the results visually. We can clearly see that the variance in the
tsvg_opacity test got much worse, except for an outlier in the previous results. The other
results do not look much different, but they still show that there is clearly no improvement
in any of them. This indicates that the method of time recording and the number of context
switches are not major factors in contributing to the variance in the tests.

The complete plots are available in Appendix B.3.

4.3 INTRODUCTION TO THREADS & EVENTS

The main job of a web browser is undeniably to display web pages, and do so in an
efficient way. Putting it like that makes the task sound reasonably easy, but, unfortunately,
things tend to be more complicated than they look at first. In the case of web browsers in
general, and Firefox in particular, there are more things to consider than just the loading
of a single web page. For example, the user interface (ui) should still respond to user
actions like trying to open a menu, even if a web page is still loading at the same time. In
other cases a user might have several pages open at the same time, some of which haven’t
finished loading or are continually running some JavaScript code, and the user then wants
to interact with another page or open a new tab. All these scenarios require that several
tasks need to be able to run in parallel, at least from a user perspective, not unlike how
multitasking operating systems work.

On the application side there are essentially two approaches to this problem: use
multiple threads or split the tasks into small, interruptible units that can be executed out of
order.

4.3.1 threads

Threads are a popular solution in these cases. They allow asynchronous execution and hand
the responsibility of scheduling them off to the operating system. In addition, they can be
put onto different processors (or processor cores), potentially increasing performance if
a lot of expensive, non-communication-heavy processing is required. However, they also
have serious drawbacks. Since threads share memory there must be a way to regulate
concurrent access to prevent race conditions. This usually involves mechanisms such as
locks, semaphores and/or monitors (Tanenbaum, 2001). Unfortunately these mechanisms
are both hard to get right, with the potential of deadlocks and other hard to find bugs,
and do not scale well to more than a few cores. In addition there is usually a significant
amount of communication necessary between a web page and the ui, so separating that
into different threads would be difficult and potentially even decrease performance.
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Figure 4.1: Comparison of the external modifications with the cpu time modifications (percentage of
mean)
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4.3.2 events

For these reasons Mozilla for the most part went with the second approach: dividing work
up into small units and executing them on just one thread. These “work units”, called
events, can range from very small, like a simple message-passing equivalent that just sets
one variable (example: nsThreadShutdownAckEvent, which simply acknowledges that the
shutdown event has been processed), to rather complex (nsPreloadURIs, which pre-loads
pages linked to from the current page in order to decrease the time needed to load the
page if a user clicks on the link later on).

Each newly created event will get dispatched to an event queue where it will then get
picked up to get executed. That way events that are used for rendering a web page and
user interface events can be freely mixed and allow for a responsive ui even when the
browser is in the process of loading a page, without the difficulties of threads. Another
advantage of this model is that it allows for incremental page load, meaning that a web page
is displayed incrementally as soon as an element has finished rendering and then reflowed
(meaning, from a user perspective, that the layout gets adjusted) once other elements have
been added. This way a user does not have to wait for the complete page to load before
they can see anything.

4.3.3 threads again: the thread pools

Despite the event model described in Section 4.3.2, threads are used in Firefox’s xpcom
framework for a few things, most notably asynchronous operations like i/o and statement
execution in the SQLite databases that are used for bookmarks and the history. These
threads typically get started early on during startup and exist throughout the entire lifetime
of Firefox.

Additionally Firefox uses the concept of a thread pool. This is a pool of anonymous
threads that exists purely to execute occasional events in an asynchronous manner without
having to keep a specific thread alive for them all the time. These thread pools (there can
be more than one that are used from different parts of the code) work in the following way:

1. An event gets put into the pool’s event queue.

2. If there are no idle threads and the current number of thread pool threads is smaller
than the maximum number allowed, a new thread gets created.

3. If a new thread has been created, it gets added to the thread pool thread list.

4. All thread pool threads are notified via a monitor so they can check the event queue.

5. One of the threads picks up the event and executes it.

6. If a thread has been idle for longer than a specified timeout, or if there are more idle
threads than allowed, that thread gets shut down.

This setup allows for the easy handling of asynchronous operations without the thread
posting the event having to worry about the details. However, for our purposes it is less
than ideal. The rather quick shutting down of threads (due to a low default timeout) can
lead to a situation where an event that gets posted to a thread pool may in one case arrive
just before a thread is supposed to get shut down and will thus reuse this thread. In
another case, say in a different run of the same test, that event may – due to tiny scheduling
differences in the operating systems – arrive at the thread pool shortly after the thread
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Figure 4.2: Comparison of the cpu time modifications with the thread pool modification (percentage
of mean)

has been shut down, requiring for a new thread to be created. This thread creation (and
destruction), while not as expensive as process creation, still incurs a cost that could lead to
measurable variance in the test suite. Initial tests showed that there were indeed a different
number of threads being created by the thread pools, so this issue was certainly worth
investigating.

4.4 INVESTIGATING THREAD POOL VARIANCE

4.4.1 experimental setup

In order to analyse the impact of the threading issues described above we modified the
Firefox source code to only ever create one thread per thread pool, and increased the
timeout to a value that guarantees that the thread will be kept alive throughout the whole
lifetime of the process. This had the potential to reduce the absolute performance of some
of the tests, since now the order of events mattered more and unrelated events would
have to wait for each other. However, since we are only interested in the variance, this was
an acceptable risk. We then ran a test series again using the same setup as explained in
Chapter 3.

4.4.2 results

Table 4.2 shows the results from our thread pool modification experiment. Unfortunately
we can immediately see that only two of the tests have a significant difference, and again
the variance has actually gotten worse instead of having improved as hoped.

The plots in Figure 4.2 illustrate this. In both tests the density has moved from
roughly around the mean to two “bulges” further away, and the inter-quartile range
of the dromaeo_dom test is about twice the size as the old one. This is clear evidence that

32



Firefox Performance Variations

Ta
bl

e
4.

2
R

es
u

lt
s

af
te

r
th

e
th

re
ad

p
oo

lm
od

ifi
ca

ti
on

,c
om

p
ar

ed
w

it
h

th
e

c
pu

ti
m

e
m

od
ifi

ca
ti

on
fr

om
Se

ct
io

n
4.

2.
2

M
ax

di
ff

(%
)

St
dD

ev
C

oV
A

bs
ol

ut
e

To
m

ea
n

Te
st

na
m

e
c
p
u
t
i
m
e

t
p
1

c
p
u
t
i
m
e

t
p
1

c
p
u
t
i
m
e

t
p
1

c
p
u
t
i
m
e

t
p
1

Le
ve

ne
p-

va
lu

e

a
1
1
y

0.
81

0.
63

0.
25

0.
19

0.
92

0.
93

0.
56

0.
53

0.
41

8
d
r
o
m
a
e
o
_
b
a
s
i
c
s

2.
05

2.
06

0.
24

0.
24

1.
01

0.
88

0.
56

0.
49

0.
85

6
d
r
o
m
a
e
o
_
c
s
s

8.
52

8.
83

0.
22

0.
23

0.
91

0.
92

0.
48

0.
51

0.
62

5
d
r
o
m
a
e
o
_
d
o
m

0.
83

1.
24

0.
33

0.
50

1.
47

1.
64

0.
74

0.
89

0.
00

2
d
r
o
m
a
e
o
_
j
s
l
i
b

0.
31

0.
45

0.
18

0.
26

0.
79

1.
21

0.
44

0.
74

0.
09

2
d
r
o
m
a
e
o
_
s
u
n
s
p
i
d
e
r

3.
17

2.
37

0.
31

0.
23

1.
29

0.
91

0.
71

0.
62

0.
25

0
d
r
o
m
a
e
o
_
v
8

1.
62

1.
40

0.
70

0.
60

1.
96

1.
88

0.
99

1.
21

0.
12

3
t
d
h
t
m
l

0.
35

0.
35

0.
12

0.
12

0.
50

0.
53

0.
28

0.
27

0.
92

6
t
g
f
x

0.
14

0.
18

1.
28

1.
69

5.
42

6.
28

2.
88

3.
15

0.
02

6
t
p
_
d
i
s
t

0.
27

0.
28

0.
18

0.
19

0.
75

0.
89

0.
39

0.
53

0.
97

7
t
p
_
d
i
s
t
_
s
h
u
t
d
o
w
n

8.
40

13
.2

4
1.

70
2.

68
7.

07
14

.3
6

4.
10

10
.2

1
0.

64
9

t
s

1.
84

1.
30

0.
55

0.
39

2.
71

1.
86

2.
27

1.
52

0.
99

4
t
s
_
s
h
u
t
d
o
w
n

4.
39

3.
78

1.
37

1.
17

6.
36

4.
73

3.
32

2.
38

0.
59

5
t
s
s
p
i
d
e
r

0.
09

0.
09

1.
02

1.
01

4.
55

4.
33

2.
30

2.
72

0.
89

5
t
s
v
g

0.
90

1.
16

0.
03

0.
04

0.
10

0.
14

0.
06

0.
07

0.
07

7
t
s
v
g
_
o
p
a
c
i
t
y

1.
51

1.
48

1.
88

1.
81

7.
46

7.
99

3.
81

4.
51

0.
78

9
v
8

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

N
aN

N
ew

re
su

lt
s

w
it

h
a

st
at

is
ti

ca
lly

si
gn

ifi
ca

nt
d

if
fe

re
nc

e
ar

e
sh

ad
ed

gr
ey

.

33



Firefox Performance Variations

the variance we are looking for is not caused by thread activity surrounding the thread
pool, and the slight increase in variance might be caused by a performance degradation
due to the reduced number of threads.

Again, the complete plots are available in Appendix B.4.

4.5 EVENT VARIANCE

As mentioned above, events are the main mechanism by which work is done in Firefox.
This leads to an interesting question: is the same work, for example a test in our test suite,
always done using the exact same events, or can it be done in different ways? And if yes,
could this be the cause for the variance we are seeing? For this we have to take a look at
what events are executed during a test and check whether there is any correlation between
the most important event properties and the variance. In concrete terms we are going to
look at two properties specifically: the number of events, and their order of dispatch.

4.5.1 experimental setup

Events are classes that inherit from the xpcom interface nsIRunnable, which declares
the single method Run(). This poses a problem for us: we do not have a way to identify
the different classes of events, since there is no public method to inspect them and run-
time type information (rtti) is not used in Firefox. We therefore need a different way of
identifying them, ideally without having to modify every single event class. The way we
solved that problem in our experiments is to generate backtrace information at the time
when an event is dispatched to an event queue, showing us exactly where an event comes
from, which is even more information than what a normal class identification would have
given us.

Since we are only interested in the events that are used during the actual tests, we also
again used our custom xpcom component and a modification to the Talos framework to
print out a special message at the moments when the test starts and when it finishes so
that we can separate the events we are interested in from the others.

Using these modifications we again ran a test series, with the only difference that we
used only 5 distinct runs. This was due to the size of the generated log files and the time it
took to run our analysis scripts afterwards.

4.5.2 results: number of events

Figure 4.3 shows an example of what the result of an event number analysis of our log
files looks like. Each line represents a single event, with the string at the beginning being a
hash of the complete backtrace and the numbers signifying the number of times this event
occurred during each of the five runs. An exclamation mark is printed after the hash if the
number of events differs between the runs, and at the end the sum of all the event numbers
is printed.

Using this information we can indeed see that there is variance in the number of events
being used during the tests. What is interesting is that there are some events that occur
several times in some of the runs but not at all in others, like for example the one in line
7 in Figure 4.3, but the overall sum of the events differs far less, proportionally speaking.
Since the events are identified by their complete backtrace instead of just their class we
suspect that this is because those events get dispatched on a slightly different path through
the program even though they belong to the same class.
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1 e19fd78b2439bcbb55d5 ! 11 11 11 12 11
2 91b1112a65d131c0a537 3 3 3 3 3
3 5aee85cd567f628853de 1 1 1 1 1
4 20162c32c9092813e7b0 3 3 3 3 3
5 535510a64010a2e38bf7 1 1 1 1 1
6 becd6cc1818bf0ff8d14 6 6 6 6 6
7 c0df172143e27468f0b7 ! 0 35 0 0 35
8 a0b44c64541919647ae0 6 6 6 6 6
9 a93dc981b861c0cc9821 ! 0 0 0 1 0

10 3dd2cc7672da14088339 12 12 12 12 12
11 .
12 .
13 .
14

15 Sum: 2075 2109 2076 2095 2107

Figure 4.3: Simplified example of an event number log after analysis

The interesting question is now whether this event variance is in any way related to the
variance we are seeing in the test results. For this we need to do a correlation analysis. We
used the Pearson product-moment correlation coefficient (Rodgers and Nicewander, 1988), a
well-established technique to measure the correlation between two variables. In this first
analysis the two variables are straightforward: the number of events for each run and the
corresponding test results, and the null hypothesis is that there is no correlation between
the variables.

The results of the correlation analysis are shown in Table 4.3. The coefficient indicates
the way in which the variables are correlated to each other: a positive value means that
as x (the number of events) increases y (the result of the test) increases as well, with 1
indicating a perfect line through all of the points. A negative value means that y decreases
as x increases, again with −1 indicating a perfect line through the points. Values near zero
mean that there is no correlation between the variables. As before we also calculated the
statistical significance of the analysis.

As we can see in the table only for two of the tests is there a correlation between the
test results and the number of events. The other tests are quite far away from any statistical
significance, indicating that in general the number of events is unrelated to the test result,
even though it does vary.

4.5.3 results: order of events

The second analysis we used was on the order of events. We were interested in determining
whether for example a large number of differences in the event order also resulted in a
big difference between the respective test results, indicating that some event orderings are
more favourable than others. For this we took all of the combinations of the runs in our
test series and computed the difference in the order of events, similar to a standard diff
algorithm, and the difference between the test results, and again ran a correlation analysis
on these two variables.

Figure 4.4 shows an example of what such an event order diff between two runs looks
like, again with the string representing the hash of the specific event. We can see that
indeed some events appear out of order, even though most of them are in the same order
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Table 4.3
Correlation analysis for the total number of events

Test name Coefficient Pearson p-value

a11y 0.19 0.763
dromaeo_basics −0.05 0.933
dromaeo_css 0.30 0.623
dromaeo_dom 0.16 0.793
dromaeo_jslib 0.36 0.554
dromaeo_sunspider 0.76 0.135
dromaeo_v8 0.41 0.492
tdhtml −0.16 0.800
tgfx 0.95 0.012
tp_dist 0.97 0.033
tsspider −0.18 0.824
tsvg 0.20 0.796
tsvg_opacity −0.76 0.236
v8 — —

Statistically significant values are shaded grey.

1 949d991aa93da7c011ae 949d991aa93da7c011ae
2 949d991aa93da7c011ae 949d991aa93da7c011ae
3 > fa11c0338f6f80ea22b2
4 > 5d6d1725bf28309d1969
5 > 52339ce63644fd59cb4b
6 211460b9bb9aa2d25270 211460b9bb9aa2d25270
7 7aa5349ab6cdb364f723 7aa5349ab6cdb364f723
8 7aa5349ab6cdb364f723 7aa5349ab6cdb364f723
9 5d6d1725bf28309d1969 <

10 52339ce63644fd59cb4b <
11 525a50883625fca6e9eb 525a50883625fca6e9eb
12 54b2cc584af6cd076f74 54b2cc584af6cd076f74
13 a036d8999956f9249846 a036d8999956f9249846
14 d91ebb7d5101277b7177 d91ebb7d5101277b7177
15 d91ebb7d5101277b7177 d91ebb7d5101277b7177
16 7aa5349ab6cdb364f723 7aa5349ab6cdb364f723
17 fa11c0338f6f80ea22b2 <
18 aeafb3e54beb9751f54f aeafb3e54beb9751f54f
19 e63578d0f3549b8de07a e63578d0f3549b8de07a

Figure 4.4: Simplified example of an event order log after analysis
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Table 4.4
Correlation analysis for the order of events

Test name Coefficient Pearson p-value

a11y −0.07 0.858
dromaeo_basics 0.01 0.978
dromaeo_css −0.19 0.597
dromaeo_dom 0.06 0.860
dromaeo_jslib −0.02 0.955
dromaeo_sunspider 0.58 0.079
dromaeo_v8 0.22 0.543
tdhtml −0.09 0.813
tgfx 0.14 0.699
tp_dist 0.98 < 0.001
tsspider 0.08 0.887
tsvg 0.44 0.386
tsvg_opacity 0.71 0.113
v8 — —

Statistically significant values are shaded grey.

in both runs. Also, some of the out-of-order events seem to depend on others, like the
events on line 4 and 5 which show up at a different place in both runs but in the same
order relative to each other. Other events seem not to be dependent on others; the event on
line 3 appears before the just mentioned two events in the second run but a while after
them in the first.

Looking at what kinds of events routinely occur out of order, we found that many of
them share a common theme: they are dependent on external or at least asynchronous
factors. The following list gives a few examples:

• nsInputStreamReadyEvent is responsible for asynchronous i/o.

• mozilla::storage::AsyncExecuteStatements utilizes a separate thread to exe-
cute statements in the databases that are used for storing bookmarks and other
information.

• nsTimerImpl::PostTimerEvent() provides access to various hardware timers and
is thus dependent on when those timers fire which is out of the control of the Firefox
process.

The results of the correlation analysis are shown in Table 4.4. Here we only have one
test with a statistically significant difference – the tp_dist test, which was also one of the
only two significant ones in the event number analysis. Since this test is by far the most
long-running one due to the number of pages it loads we suspect that the length of the
test has an impact on how well the events and the test results are correlated – possibly the
connection is drowned out by unrelated factors in the other, shorter tests.

Unfortunately, these results mean that – except possibly for the tp_dist test – there
is no direct correlation between event properties and the test results, so it seems like the
events are not directly responsible for the variance we see in the test results.
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5 FORECASTING

As the previous chapters have shown, it is not reasonably possible to eliminate all potential
variance in our performance tests. This still leaves us with our original problem, though:
how do we determine whether a new test result signifies a genuine change in performance
or is just noise. If we cannot reduce the noise itself, is there maybe a way to determine the
type of a new value based on the previous ones, that is figure out whether it fits into the
current trend? There is, to a certain extent.

Note that there are a few differences between the series we used in the previous chapters
and the ones we will be looking at here: in this chapter we will use data from the official
Mozilla test servers that form a so-called statistical time series (meaning they are based on
different points in time with actual changes in between, that is with different versions of
Firefox, something that our own data intentionally did not have. Not to be confused with
our own definition of series in Section 2.3) instead of our self-generated data in order to
have a mixture of noise and real performance changes to test our models on.

5.1 T-TESTS: THE CURRENT TALOS METHOD

There are essentially three cases that a new value in our results could fall into, and the
goal is for us to be able to distinguish between them. The first case is that there are no
performance-relevant code changes and the noise is so small that it can easily be classified
as a non-significant difference from the previous results. The second one is that there are
still no relevant code changes, but this time the noise is much larger so that it looks like
there may actually be relevant changes. The last one is that there are relevant code changes
and the difference in value we see is therefore one that will stay while the new code is in
place.

Phrasing it like that indicates one potential solution to our problem: if we check more
than one new value and determine if – on average – they differ from the previous results
in a significant way, we know that there must have been a code change that introduced a
long-lasting change in performance. Unfortunately this method has a problem of its own:
we cannot immediately determine whether a single new value is significantly different, we
have to wait for a few more in order to compute the average.

This is essentially what the method that is currently employed by Mozilla does. In more
detail, there are two parts to it:

1. Compute the means of the 30 results before the current one and of the 5 runs starting
from it, that is create two moving averages.

2. Use a t-test to determine whether the difference between the means is statistically
significant.

Like with our question of how many runs to use in a test series as described in
Section 2.5.1, there is an inherent trade-off involved in deciding how many results should
be used for the means calculations. In the case of the so-called back-window, that is the
window that goes back from the current result, a too big one would mean that larger,
genuine performance changes would distort the mean in a way that it no longer represents
the most recent performance that we are trying to compare our new results to, and a
window that is too small would put too much emphasis on short-term noise. The number
30 that the Mozilla developers chose seems to be a reasonable compromise between these
conflicting requirements.

38



Firefox Performance Variations

For the fore-window the requirements are slightly different: we still have the problem of
putting too much emphasis on noise if we choose a small window, but more importantly
we want to find a regression as soon as possible so the code changes that are responsible
for it can be reversed without too much trouble. In addition short performance spikes
could go unnoticed if they get “lost” in a long series of normal results. Again, the value of
5 should work reasonably well in this case.

An important thing to note with regard to the fore window is that it starts at the value
we are currently investigating, not ends. This is because we are interested in the first value
where a regression happens. If we interpret the performance change as a “step” like in a
step-wise function then starting from the first value after the step means that all of the
values that are taken into account for the window will share the same change and thus
should ideally lead to a mean that reflects that, pointing back at the “step” that caused it.

Now that we have our two windows, how do we determine whether the difference
between their means is actually significant enough, that is whether it can be attributed to
genuine performance changes? This is where the hard statistics comes in. Determining
the significance of a difference in means is a well-established field, and the method that
is appropriate in our case is the so-called t-test. A t-test is essentially a special case of an
anova analysis for finding the difference in means between two or more groups, as the
t-test only works with exactly two groups – which is what our two windows are – and one
factor of interest, that is the test result in our case. To be more specific we use a variation of
the t-test for cases with independent samples (i.e. an unpaired test), unequal sample sizes
and potentially unequal variance called Welch’s t-test. The test statistic t is computed in the
following way:

t =
X1 − X2√

s2
1

N1
+

s2
2

N2

where Xi, s2
i and Ni are the ith sample mean, sample variance and sample size, respectively.

This test statistic t can then be used to compute the significance level of the difference
in means as it moves away from zero the more significant the difference is. The default
t threshold that is considered to be significant in the Talos analysis is 9. This seems to
be another heuristic based on experience, but it can hardly be justified statistically – in
order to properly calculate the significance level another value is needed: the degree of
freedom. Once that is known the significance level can be easily looked up in standard t-test
significance tables1. However, this degree of freedom has to be computed from the actual
data, it cannot be known in advance, and it also would be different for different tests. Using
a single threshold for all of the tests is therefore not very reliable.

5.2 FORECASTING WITH EXPONENTIAL SMOOTHING

As already mentioned in the previous section, the current method has a few problems.
For one thing, the window sizes used are rather arbitrary – they seem to be reasonable,
but there is no real statistical justification for them, and the fact that all the values in
the window are treated equally presents problems in cases where there have been recent
genuine changes. Also, due to the need for the fore window a regression can usually not be
found immediately, only after a few more results have come in. Apart from this unfortunate
delay this can also lead to changes that go unnoticed because they only exist for a short

1See for example http://www.statsoft.com/textbook/distribution-tables/#t.
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time, for example because a subsequent change had the opposite effect on performance
and the mean would therefore hardly be affected. So instead of a potential performance
gain the performance will then stay the same since the regression will not get detected.

We therefore need a more statistically valid way that can ideally report outliers imme-
diately and that does not depend on guesses for the best number of previous values to
consider.

An obvious solution to the problem of equal weights in the window average is to
introduce weighting, that is a weighted average. In the case of our back window we would
give the highest weights to the most recent results and gradually less to earlier ones. This
would also eliminate the need for a specific window size, since as the weights will be
negligible a certain distance away from the current value we can just include all (available)
previous values in our computation. The only issue in this case is the way in which we
assign concrete weights to the previous results.

Exponential smoothing is a popular statistical technique that employs this idea by assign-
ing the weights in an exponentially decreasing fashion, modulated by a smoothing factor,
and is therefore also called exponentially weighted moving average. The simplest and most
common form of this was first suggested by Holt (1957) and is described by the following
equations:

s1 = x0

st = αxt−1 + (1 − α)st−1 = st−1 + α(xt−1 − st−1), t > 1

Here st is the smoothed statistic and α with 0 < α < 1 is the smoothing factor mentioned
above. Note that the higher the smoothing factor, the less smoothing is applied – in the case
of α = 1 the resulting function would be identical to the original one, and in the case of
α = 0 it would be a constant with the value of the first result.

The obvious question here is: what is the optimal value for α? That depends on the
concrete values of our time series. Manually determining α is infeasible in our case,
though, so we would need a way to do it automatically. Luckily this is possible: common
implementations of exponential smoothing can use a method that tries to minimize the
squared one-step prediction error in order to determine the best value for α in each case2.

The property that is most important to us about this technique is that it allows us to
forecast future values based on the current ones. This relieves us of the need to wait for a
few new values before we can compute the proper moving average for our fore window,
and instead we can operate on a new value immediately. Similarly we do not have to wait
until we have enough data for our back window before we can start our analysis. In theory
we can start using it with only one value, although in practice we would still need a few
values for our analysis to “settle” before the forecasts become reliable.

Normally the exponential smoothing forecast will produce a concrete new value, which
is useful for the field of economics where it is most commonly applied. In our case, however,
we want to instead know whether a new value that we already have can be considered
an outlier. For this we need a modification that will produce confidence intervals. Yar and
Chatfield (1990) developed a technique for that using the assumption that the underlying
statistical model of exponential smoothing is the arima (autoregressive integrated moving
average) model, calling the intervals prediction intervals. The exact method of how to
compute these intervals is a bit too involved to repeat it here but it is explained in detail in
their paper.

2For example http://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html.
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Figure 5.1: Prediction intervals for three values
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Figure 5.1a shows an example from the tp_dist test with official test server data and
the 95 % prediction interval for the next three values. We used three here to make the
interval easier to identify, but in practice only one would be needed.

The figure also demonstrates what influence big changes in the past have on the
prediction intervals. The big jump in performance in the middle is still reflected in the
intervals at the end, although the results themselves would by now clearly lie outside of
them if they were to reoccur. Figure 5.1b shows the same data except that the two outliers
have been removed, and we can immediately see that the prediction intervals are now
much more narrow – even several of the values from the first third would now lie outside
of them, demonstrating that they do not have much influence any more. Therefore in the
case of such apparently genuine changes that have been reverted it might still make sense
to remove the values from the ones that are used for future predictions to avoid intervals
that are unnecessarily wide.

An important thing to note is that the official test results form an irregular time series,
that is the values were taken at irregular intervals in time – usually when a new version
was committed to the main repository, which is of course very much random. However,
prediction with exponential smoothing only works on regular time series, where all the
distances between the values are the same. We argue that in our case we can ignore this
distinction and interpret our irregular time series as a regular one. This is possible as our
irregular series has a fundamental difference from common ones: usually the values from
an irregular series are a kind of snapshot that are taken at certain times, but change is
happening at all times whether a snapshot gets taken at that time or not. But in our case
the values that we have are the only changes that occur, so the actual time that has passed
in between the values is irrelevant. There is only one catch with this theory: since the test
instances are distributed over a whole range of machines, it is possible, and even rather
likely, that between two values on one machine there are other values on other machines.
However, since potential changes would then be detected on those other machines earlier,
this catch can still be safely ignored. This applies equally to the current t-test method and
would therefore not introduce any additional issues anyway.

In addition to this simple exponential smoothing two extensions have been developed to
handle more complex cases. Double exponential smoothing is one such method that is better
able to deal with trends in the data. Global trends do not really exist in our performance
tests, though, so utilizing this approach would yield no immediate benefit and would
introduce the need to find a way to determine the optimal trend smoothing factor similar to
the smoothing factor we are already using. However, future work might look at a way to
use this technique on short-term trends during work periods that focus on optimizations
and other similar situations.

A further extension, triple exponential smoothing, sometimes called the Holt-Winters
method (Winters, 1960; Goodwin, 2010), was created to deal with seasonal trends, for
example cases where buying habits change predictably depending on the month. Such
trends do not occur at all in our performance tests though and this method has therefore
not been investigated further.

5.3 COMPARISON OF THE METHODS

We now want to compare our two methods on an example to give an impression of how
they differ in their ability to distinguish between noise and genuine changes. For this we
used a long stretch of official test data for the tp_dist test and ran both methods on it,
marking the points where they reported a significant change.
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Figure 5.2: Comparison of the two analysis methods
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Figure 5.2 shows the result of this comparison. The test results from three other machines
are also depicted greyed out in the background to easier determine which changes are
genuine and which are noise, since the genuine changes will show up in all of the machines.

Two things can be learned from the graph: first, and most importantly, our prediction
interval method detects more of the genuine changes than the current t-test method. For
example, the big jumps in August 2010 and February 2011 go undetected by the current
method since they are followed by equally big jumps back soon after. This is a result of the
need for more than one value in the respective analysis, obscuring single extreme values
in the process. On the other hand, all of the changes that are detected by the old method
are also detected by our suggested method, thus demonstrating that previously detectable
changes would not get lost with it.

The second difference can be seen during July/August 2010: the current method can
sometimes report the same change multiple times for subsequent values, so additional care
has to be taken to not raise more alarms than necessary.

This example demonstrates that our proposed statistical analysis offers various benefits
over the one that is currently employed. Not only does it give better results, it also needs
only the newest value in order to run its analysis. In addition it is also straightforward to
implement, several implementations even already exist in widespread software like R3 and
Python4.

One disadvantage of our method should be mentioned, however. If there is a series of
small regressions, each too small to be detected as an outlier, then the performance could
slowly degrade without any warnings being given. Depending on the exact circumstances
this degradation might be able to be detected by the old method, but it would probably
be better to develop a different method that is specifically tuned for this case and use this
method in addition to ours.

3http://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html
4http://adorio-research.org/wordpress/?p=1230
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6 RELATED WORK

This section will present two different approaches that have been used in previous work
to reduce nondeterminism in software testing: trying to identify and measure the actual
variance and trying to increase the determinism in multi-threaded programs.

6.1 VARIANCE MEASUREMENTS

Mytkowicz et al. (2009) investigated what they called measurement bias: small changes in an
experimental setup that can introduce significant bias in the result. They claimed that many
researchers do not pay enough attention to this bias and investigated its effect on a set of
experiments. Specifically they considered two different scenarios: (1) the unix environment
size and (2) the program link order. They found that both can have a measurable impact on
benchmark results, up to 8 % for the environment size and 4 % for the link order. The cause
in both cases was attributed to memory layout. The size of the environment influenced
the beginning of the stack and thus the alignment of its content, resulting in a layout that
was not optimal for the hardware architecture in many cases. Similarly, the link order
changed the code layout in the executable which affected hardware buffers and various
other hardware aspects like branch prediction. As a partial solution to this problem they
proposed using a large benchmark suite and randomizing the experimental setup.

A similar conclusion was reached by Gu et al. (2004). Their original goal was to evaluate
different object layouts in the Sable Java vm1 for its copying garbage collector. However,
during their experiments they discovered unexpected differences in performance that could
not be explained by their layout changes. This led them to investigate how the changes
affected the low-level code execution by using hardware performance counters. They found
that even the adding of code that was never executed could lead to shifted code segments
in the resulting executables which then has a measurable impact on the instruction cache,
the cycle count, and the data cache. These differences were still not well correlated with
the performance changes, though.

The presence of variability in multi-threaded workloads both in real and simulated
systems was investigated by Alameldeen and Wood (2003). They described two different
kinds of variability: time variability, that is different performance characteristics during
different phases of a single run, and space variability, the execution of different code paths
caused for example by the operating system scheduling threads differently during different
runs. They showed that variability can be a problem even in deterministic simulations under
certain conditions. In order to quantify their results they introduced two new metrics: the
wrong conclusion ratio, the percentage that a wrong conclusion is drawn from an experiment
pair, and the range of variability, the difference between the maximum and minimum values
of a series of runs as a percentage of the mean, which is identical to our absolute maximum
difference metric. As a solution to the variability problem they proposed averaging over a
number of runs using some statistical techniques to estimate the optimal sample size.

Georges et al. (2007) tried to give the performance analysis of Java programs a statisti-
cally sound base since they noted that many published papers lack a rigorous statistical
background and instead invent their own methods for analysing results. This situation can
lead to incorrect conclusions in extreme cases, especially since managed runtime systems
are notoriously difficult to benchmark. They first gave an overview of basic statistical con-
cepts like confidence intervals, the central limit theorem, and the anova test for comparing

1http://www.sable.mcgill.ca/
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alternatives. These techniques were then demonstrated on an example that measured the
start-up and the steady-state performance of various garbage collector strategies in the Java
vm, which also showed that their results occasionally differed from results in other papers
that did not use the same rigorous approach.

Kalibera et al. (2005) investigated the dependency of benchmarks on the initial, random
state of the system. They claimed that the variation during one run of a benchmark, even if
it accounts for things like external disruptions, does not capture the true extent of possible
variance and that benchmarks are therefore not the reproducible processes they are usually
thought to be. They tested their assumptions on a few benchmarks that produced many
samples in one run to be averaged over and ran them several times independently, finding
that the between-runs variance was much higher than the within-runs variance. Similar
to previously mentioned papers they tested two example causes of such variance: non-
determinism in memory allocation and code compilation. Their investigation revealed that
there is some correlation between those phenomena and variance but they admitted that
listing and eliminating all possible causes would be impossible. They, too, suggested a
benchmarking setup that tries to alleviate the problem as much as possible by running
a benchmark several times to be able to use statistical methods that take both kinds of
variance into account and so end up at a more reliable average. Note that this setup is
similar to ours as the Talos tests already produce a within-tests average that is then used
for our between-tests/runs analysis.

A slightly different issue, the effect of “coincidental artifacts” on an evaluation, was
investigated by Tsafrir et al. (2007). They defined coincidental artifacts as effects that
influenced the outcome of a performance evaluation but were outside the scope of the
benchmark, like “unique interactions between the system and the specific trace used”. They
gave the example of a scheduler evaluation on a specific job workload where changing
the workload by only 0.046 % changed the result by 8 %. To alleviate this problem they
introduced their methodology of shaking the input, that is running the benchmark several
times with a different set of noise added to the workload each time2 and then averaging
over the result, and demonstrated it on a scheduling algorithm and a set of different
workloads. An important consideration of this technique that they mentioned was that
care has to be taken when shaking the workload so that it does not get distorted in a
way that will lead to unreliable results, meaning that only less fragile parameters should
be modified. Their results showed that even with a relatively small amount of shaking
the reliability of their benchmark could be significantly improved, leading to a smoother
progression with fewer outliers. Note that this technique is not really applicable for us
since many of our tests evaluate concrete functionality instead of a random workload and
the required repeated tests would increase our test times too much.

6.2 DETERMINISTIC MULTITHREADING

Most of the work concerned with the determinism of multi-threaded programs until
recently has only dealt with the problem of replayability, that is a technique that records a
log of one run and then offers the possibility to replay that run on another machine for
debugging purposes. This is not useful for our purposes since we are not concerned with a
single run but with a comparison between different runs, especially since those techniques
usually do not pay attention to performance characteristics. However, in the last few years
there have been some attempts to introduce determinism to a wider range of uses. Since

2This is also known as fuzzing.
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threads are used for a few purposes in Firefox (see Chapter 4 for details) this is worth
looking into.

Devietti et al. (2009) presented a way to make threading deterministic using a technique
they called deterministic serialization of parallel execution. Their technique works by intro-
ducing a token that is required for each memory access – or each group of finite accesses
they called a quantum – and is passed on from thread to thread in a deterministic fashion.
Since this method introduces significant performance degradation due to threads having to
wait for the token they proposed some hardware changes that would drastically reduce the
overhead. In order to support this hypothesis they implemented the changes in a hardware
simulator and as a pure software framework for comparison. Their results showed that the
hardware version had negligible performance degradation compared to a nondeterministic
system and that the software version was at least usable for debugging purposes.

A somewhat similar approach was used by Olszewski et al. (2009). However, their goal
was to make thread determinism usable on today’s commodity hardware without requiring
hardware changes. In order to reduce the performance degradation of this approach they
used what they called weak determinism which does not apply to every memory access
but instead only to lock acquisition. For this they implemented a deterministic subset
of the posix Thread (pthread) api that utilized hardware performance counters to track
the locking behaviour. They then used the splash-2 benchmark suite to evaluate their
framework, finding that it only introduced a 16 % overhead on a 4-processor system.
Unfortunately, due to their changes to the pthread library it is not possible to run any
arbitrary application; only a subset of programs work.

Bergan et al. (2010a) introduced a “compiler and runtime system” based on the llvm
compiler suite that uses a sophisticated mechanism based on an ownership model for
memory regions and a deterministic commit protocol for committing changes to shared
memory. They showed that their system scales quite well, but it does introduce a perfor-
mance loss of 1.2×–6×. In addition it is highly dependent on small changes in either the
input or the program itself; while it guarantees that the same program run with the same
input will always execute in a deterministic fashion there are no such guarantees for even
small changes in the program.

A new operating system abstraction called a Deterministic Process Group (dpg) was
proposed by Bergan et al. (2010b). These dpgs are defined as groups of processes that
are executed completely free of internal nondeterminism like thread scheduling and were
implemented using techniques introduced by Devietti et al. (2009) and Bergan et al. (2010a).
In addition they described a type of program called a shim that acts as a wrapper around
a dpg and that can be used to eliminate external nondeterminism like file access and to
implement a record/replay mechanism. Similar to the previous work they introduce some
amount of performance loss (around 2.5× on average) and do not guarantee determinism
after program changes. The authors also explicitly state that “dpgs guarantee deterministic
output, but not deterministic performance”.

Cui et al. (2010) tried to address the problem of input dependence for deterministic
execution by creating a what they called stable system based on schedule memoization.
Their idea was that many working schedules can be reused even for different inputs
since the internal workings of a program stay the same. In order to accomplish this they
developed a system that memoizes working schedules along with their constraints on the
input so they can be recalled if new input matches the given constraints of a past schedule.
Their implementation also utilizes llvm and only considers lock synchronization instead
of full memory access synchronization similar to Olszewski et al. (2009) for performance
reasons. Depending on the use of locks in the programs this can still lead to significant
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performance overhead, though. In addition their system requires some changes to the
source code of the programs and does not guarantee deterministic performance, only
behaviour for the memoized schedules.

Considering all of the constraints of these deterministic multithreading systems we
must conclude that they are not really applicable to our situation, at least not yet. While the
current systems provide a definite benefit for tasks like debugging the fact that performance
determinism is not guaranteed (and indeed probably impossible) due to the way these
systems realize their threading guarantees makes them unsuitable for analysing variance.
This is because in order to guarantee execution determinism the systems can suspend
threads if they are scheduled by the operating system in a different way from the first
run, and they then have to wait for the operating system to schedule the thread that is
actually supposed to be run at a certain point in time. In this way the threads are executed
in exactly the same order every time, but the actual timing can vary wildly depending on
the operating system’s scheduling decisions. However, it will be interesting to follow the
developments in this field of research.
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7 CONCLUSIONS

This paper had three main goals: (1) Identifying the cause(s) of variance in performance
tests on the example of Mozilla Firefox, (2) trying to eliminate them as much as possible,
and (3) investigating a statistical technique that would allow for better distinction between
real performance changes and noise. We evaluated three different categories of approaches
with varying degrees of success to achieve these goals.

In Chapter 3 we looked at external influences like concurrently running programs,
memory randomization and hard drive access. We found that all of them contributed to
the variance to some degree, with the memory randomization surprisingly being the most
influential one. This indicates that issues like memory alignment, physical layout as with
numa architectures and prefetching have more influence on program performance than
might be expected. Unfortunately we were not able to trace these assumptions at such a
low level, but they are consistent with work done by others (see Chapter 6.1). We then
suggested a way to minimize these influences in official tests run by Mozilla. While the
advances we achieved with our modifications were significant, they did not reduce the
variance to our ideal level, though.

Chapter 4 dealt with the internal workings of Firefox. Here we were focussing on three
major aspects: the time the process actually runs on the cpu, the threads that are constantly
created and destroyed by the thread pool and the event mechanism that is used in Firefox’s
xpcom framework to do its work. Regarding the process time we discovered that there was
no measurable improvement achieved by our modifications, and that in fact some of the
tests had a slightly higher variance than before. Changing the thread pool implementation
to only create one thread and keep it alive for the lifetime of the program had a similar
result: a slight worsening in variance for some of the tests and no improvements in the
others, indicating that these threading issues are not significantly responsible for the
variance we are seeing. Lastly we measured two event properties: the number of events that
are used during a test run and the order in which they are used. We discovered that both
of them had a certain amount of variance, but a correlation analysis concluded that this
variance was only correlated to the test result variance in two cases for the first property
and one for the second property. Interestingly the only test for which both properties were
correlated is also the one with the longest test run time by far, suggesting that the length
of the test is responsible for this. Possibly there are some influences that overshadow the
correlation in shorter tests but get marginalized once the test length exceeds a certain
threshold. This could be a promising starting point for future work.

Finally, in Chapter 5 we presented a statistical technique for assessing whether a new
result in a test series falls outside of the current trend and is therefore most likely not
noise. This technique was shown to have various benefits over the currently used one,
most importantly it could report some changes that the one that is currently being used by
Mozilla missed. Additional advantages include being able to run the analysis on new values
immediately instead of having to wait for a certain number of values that are needed for a
moving average, and similarly the analysis can start when only a few values are available
for a machine unlike the 30 values that are required for the current moving average.

In summary we managed to achieve a certain degree of success for all three of our goals.
We identified various external influences and offered solutions to mitigate them, and sug-
gested a statistical technique that improves the quality of change detection. Unfortunately
we did not conclusively find a connection between the inner workings of Firefox and the
measured variance, but we did find a certain amount of internal variance. Investigating this
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variance and how it relates to the performance test variance, in addition to other possible
sources of internal variance, should be a promising topic for future work.

There is one important thing to note about performance testing in general. The work
done by Mytkowicz et al. (2009) and Kalibera et al. (2005) and us in Chapter 3 shows that
even small changes in the environment can have a measurable impact on the test results,
and it is nearly impossible to eliminate all potential changes. For example, running a test
with memory randomization disabled can obviously only give results that result from the
specific memory layout that happens to be chosen for the current run of the program, but
it cannot tell us anything about how favourable this layout is in regard to the hardware
issues we mentioned. So we could get a favourable layout in one run, and an unfavourable
one in the next run (for example due to shifted code as investigated by Gu et al. (2004)),
and the effect would be that the results differ from each other even without any genuine
performance changes. The only solution to this would be to take several samples, i.e. tests,
while only changing this specific parameter – in this case memory layout, which could be
achieved by enabling randomization again – and average over the results. Unfortunately
this is not really feasible in many continuous integration scenarios because of the additional
resources it would require, but it is something to keep in mind when evaluating test setups
and techniques.

7.1 FUTURE WORK

Looking at our results there are still various variance factors that we have not found yet. It
would be valuable to know whether there are other external factors that can be reduced or
whether they are part of the above mentioned ones that can only be approximately solved
through averaging. Additionally the internal variance in the events is worth investigating
further, especially the question of why it almost only correlates with the longest-running
test.

Another worthwhile direction would be to apply our research to other applications,
especially other browsers like Google Chrome. This was outside the scope of this paper,
not the least because those browsers use entirely different – and not in all cases even
publicly accessible – performance test suites. The general principle should be the same,
though, so it would be interesting to see whether there are any differences between the
amount of and the causes of variance. At least our statistical technique is not tied to any
specific application and should work for anything that can be represented as a time series,
regardless of how the data was produced.
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A SCRIPTS

This is the shell script we used to prepare for the external optimization tests. As mentioned
in the text memory randomization and cpu isolation mechanisms were enabled directly in
the kernel.

1 # official optimizations
2 rm /dev/random
3 mknod /dev/random c 1 9
4 echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
5 echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor
6

7 if [[ "$1" == "-o" ]]; then
8 exit
9 fi

10

11 # our optimizations start here
12 stop gdm
13 stop ssh
14 stop avahi-daemon
15 /etc/init.d/networking stop
16 pkill dhclient
17 stop network-manager
18 pkill modem-manager
19 pkill wpa_supplicant
20 stop cron
21 stop atd
22 /etc/init.d/cups stop
23 pkill pulseaudio
24 pkill irqbalance
25

26 mount /ramfs
27 chown test:test /ramfs
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B COMPLETE PLOTS

B.1 ISOLATED MODIFICATIONS

Explanation of the abbreviations:

• nomod: No modifications except for the official ones (see Section 2.5.1).

• plain: All non-essential processes terminated.

• norand: Memory randomization disabled.

• exclcpu: Firefox runs exclusively on one processor with the rest of the processes
running on the other one.

• ramfs: Firefox and all of the test data and logs reside on a ram disk (no hard disk
access).
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Figure B.1: Isolated modifications, percentage of mean, part 1
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Figure B.2: Isolated modifications, percentage of mean, part 2
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Figure B.3: Isolated modifications, percentage of mean, part 3
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Figure B.4: Isolated modifications, absolute values, part 1
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Figure B.5: Isolated modifications, absolute values, part 2
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Figure B.6: Isolated modifications, absolute values, part 3

60



Firefox Performance Variations

B.2 MEMORY RANDOMIZATION COMPARISONS

Explanation of the abbreviations:

• nomod: No modifications except for the official ones (see Section 2.5.1).

• cumul: All of the changes from Chapter 3.

• norand: Memory randomization disabled.
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Figure B.7: norand comparisons, percentage of mean, part 1
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Figure B.8: norand comparisons, percentage of mean, part 2
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Figure B.9: norand comparisons, percentage of mean, part 3
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Figure B.10: norand comparisons, absolute values, part 1
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Figure B.11: norand comparisons, absolute values, part 2
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Figure B.12: norand comparisons, absolute values, part 3
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B.3 C P U TIME MODIFICATION

Explanation of the abbreviations:

• cumul: All of the changes from Chapter 3.

• cputime: The cpu time changes from Section 4.2.1.
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Figure B.13: cpu time modification, percentage of mean, part 1
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Figure B.14: cpu time modification, percentage of mean, part 2
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Figure B.15: cpu time modification, absolute values, part 1
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Figure B.16: cpu time modification, absolute values, part 2
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B.4 THREAD POOL MODIFICATION

Explanation of the abbreviations:

• cputime: The cpu time changes from Section 4.2.1.

• tp1: The thread pool modifications from Section 4.4.1.
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Figure B.17: Thread pool modification, percentage of mean, part 1
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Figure B.18: Thread pool modification, percentage of mean, part 2
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Figure B.19: Thread pool modification, absolute values, part 1
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Figure B.20: Thread pool modification, absolute values, part 2
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C CREATIVE COMMONS LICENSE

This is the text of Creative Commons Attribution 3.0 Unported License.1

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

C.1 DEFINITIONS

a. “Adaptation” means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of music
or other alterations of a literary or artistic work, or phonogram or performance and
includes cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably derived from the
original, except that a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of doubt, where the Work
is a musical work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image (“synching”) will be considered an Adaptation for
the purpose of this License.

b. “Collection” means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject
matter other than works listed in Section 1(f) below, which, by reason of the selection
and arrangement of their contents, constitute intellectual creations, in which the Work is
included in its entirety in unmodified form along with one or more other contributions,
each constituting separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this License.

c. “Distribute” means to make available to the public the original and copies of the Work
or Adaptation, as appropriate, through sale or other transfer of ownership.

d. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

e. “Original Author” means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can
be identified, the publisher; and in addition (i) in the case of a performance the actors,

1https://creativecommons.org/licenses/by/3.0/
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singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in
the case of a phonogram the producer being the person or legal entity who first fixes
the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. “Work” means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such
as a book, pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a choreographic work
or entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process analogous
to cinematography; a work of drawing, painting, architecture, sculpture, engraving
or lithography; a photographic work to which are assimilated works expressed by a
process analogous to photography; a work of applied art; an illustration, map, plan,
sketch or three-dimensional work relative to geography, topography, architecture or
science; a performance; a broadcast; a phonogram; a compilation of data to the extent
it is protected as a copyrightable work; or a work performed by a variety or circus
performer to the extent it is not otherwise considered a literary or artistic work.

g. “You” means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

h. “Publicly Perform” means to perform public recitations of the Work and to communi-
cate to the public those public recitations, by any means or process, including by wire
or wireless means or public digital performances; to make available to the public Works
in such a way that members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public by any means or
process and the communication to the public of the performances of the Work, including
by public digital performance; to broadcast and rebroadcast the Work by any means
including signs, sounds or images.

i. “Reproduce” means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram in
digital form or other electronic medium.

C.2 FAIR DEALING RIGHTS

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright
or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

C.3 LICENSE GRANT

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license
to exercise the rights in the Work as stated below:
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a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including
any translation in any medium, takes reasonable steps to clearly label, demarcate
or otherwise identify that changes were made to the original Work. For example, a
translation could be marked “The original work was translated from English to Spanish”,
or a modification could indicate “The original work has been modified.”;

c. to Distribute and Publicly Perform the Work including as incorporated in Collections;
and,

d. to Distribute and Publicly Perform Adaptations.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme can be
waived, the Licensor waives the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as are
technically necessary to exercise the rights in other media and formats. Subject to Section
8(f), all rights not expressly granted by Licensor are hereby reserved.

C.4 RESTRICTIONS

The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the
recipient of the Work to exercise the rights granted to that recipient under the terms
of the License. You may not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work,
You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient
under the terms of the License. This Section 4(a) applies to the Work as incorporated in
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a Collection, but this does not require the Collection apart from the Work itself to be
made subject to the terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from the Collection any credit
as required by Section 4(b), as requested. If You create an Adaptation, upon notice from
any Licensor You must, to the extent practicable, remove from the Adaptation any credit
as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep intact all copyright
notices for the Work and provide, reasonable to the medium or means You are utilizing:
(i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if
the Original Author and/or Licensor designate another party or parties (e.g., a sponsor
institute, publishing entity, journal) for attribution (“Attribution Parties”) in Licensor’s
copyright notice, terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable,
the URI, if any, that Licensor specifies to be associated with the Work, unless such URI
does not refer to the copyright notice or licensing information for the Work; and (iv) ,
consistent with Section 3(b), in the case of an Adaptation, a credit identifying the use of
the Work in the Adaptation (e.g., “French translation of the Work by Original Author”,
or “Screenplay based on original Work by Original Author”). The credit required by
this Section 4 (b) may be implemented in any reasonable manner; provided, however,
that in the case of a Adaptation or Collection, at a minimum such credit will appear,
if a credit for all contributing authors of the Adaptation or Collection appears, then
as part of these credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above and,
by exercising Your rights under this License, You may not implicitly or explicitly assert
or imply any connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work,
without the separate, express prior written permission of the Original Author, Licensor
and/or Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted
by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by
itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify
or take other derogatory action in relation to the Work which would be prejudicial to
the Original Author’s honor or reputation. Licensor agrees that in those jurisdictions
(e.g. Japan), in which any exercise of the right granted in Section 3(b) of this License (the
right to make Adaptations) would be deemed to be a distortion, mutilation, modification
or other derogatory action prejudicial to the Original Author’s honor and reputation,
the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent
permitted by the applicable national law, to enable You to reasonably exercise Your right
under Section 3(b) of this License (right to make Adaptations) but not otherwise.

C.5 REPRESENTATIONS, WARRANTIES AND DISCLAIMER

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LI-
CENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY
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OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MER-
CHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR
THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

C.6 LIMITATION ON LIABILITY

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCI-
DENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

C.7 TERMINATION

a. This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not
serve to withdraw this License (or any other license that has been, or is required to be,
granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

C.8 MISCELLANEOUS

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the license
granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.
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e. This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were drafted
utilizing the terminology of the Berne Convention for the Protection of Literary and
Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the
WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of
1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights
and subject matter take effect in the relevant jurisdiction in which the License terms are
sought to be enforced according to the corresponding provisions of the implementation
of those treaty provisions in the applicable national law. If the standard suite of rights
granted under applicable copyright law includes additional rights not granted under this
License, such additional rights are deemed to be included in the License; this License is
not intended to restrict the license of any rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in
connection with the Work. Creative Commons will not be liable to You or any party on any
legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. Notwithstanding
the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the
Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed
under the CCPL, Creative Commons does not authorize the use by either party of the
trademark “Creative Commons” or any related trademark or logo of Creative Commons
without the prior written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage guidelines, as may be
published on its website or otherwise made available upon request from time to time. For
the avoidance of doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.
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