
Designing Grace: Can an Introductory Programming
Language Support the Teaching of Software Engineering?

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Michael Homer
Victoria University of Wellington

mwh@ecs.vuw.ac.nz

Kim B. Bruce
Pomona College, CA
kim@cs.pomona.edu

Andrew P. Black
Portland State University
black@cs.pdx.edu

Abstract

Many programming language constructs that support software engineering in the large — explicit
variable declarations, explicit external dependencies, static types, information hiding, invariants —
provide little benefit to the small programs written by novice programmers, where every extra
syntactic token has to be explained and understood before novices can succeed in running even
the simplest program. We are designing Grace, a new educational object-oriented language that
we hope will prove useful for teaching both programming and software engineering. This paper
describes some of the tradeoffs between teaching programming and teaching software engineering
that we faced while designing Grace, and our attempts to address those tradeoffs.

1. Introduction

Programming language design involves a series of tradeoffs [8]. For example, we can make pro-
grams easier to compile by making them harder to write, for example, by requiring all constants
to be declared together at the top of the program, and forbidding forward references [12]. We can
make programs run faster by making them harder to write, for example, by requiring the program-
mer to choose between fast, fixed-sized integers or slow, arbitrary precision rationals. We can make
programs less likely to fail at runtime, for example, by requiring programmers to catch all possible
exceptions thrown by subroutines, or by imposing a strict static type discipline.

Tradeoffs of this kind are particularly problematic when the language being designed is intended
to be used for teaching novices. Programmers certainly have strong opinions about the “best” first
programming language [5]. The key tradeoff is between helping the student to get something work-
ing — often, anything at all working — and helping them to learn the right way to get something
working. This tradeoff is especially acute when following a “software-engineering first” curricu-
lum [15, 19].

Programming is to software engineering what carpentry is to building construction: a basic
skill that is difficult to master, but that is not by any means the whole of professional practice.
Many civil engineering practices — drawing blueprints, conducting quantity surveys, estimating
costs, and complying with building codes — are crucial when constructing significant buildings or
roadways. But these large-scale practices are unnecessary irrelevant distractions when building a
treehouse in the backyard. In a similar way, many of the programming practices needed to support,

and thus to teach, software engineering, are of most value when programming-in-the-large. We
have in mind practices ranging from explicit variable declarations, explicit specification of external
dependencies, compulsory static type specifications, information hiding, and formal behavioral
specifications. Novice programmers don’t typically start by programming-in-the-large: they begin
by writing small programs. Even by the end of the first or second course on programming, many of
the programming disciplines that promote good software engineering practice still make it harder
for the students to get their small programs to run.

We are engaged in the design of a new object-oriented programming language named Grace
(see http://www.gracelang.org). Grace aims to be suitable for teaching introductory programming
courses, and to look familiar to instructors who know other object-oriented languages, while giving
instructors and text-book authors the freedom to choose their own teaching sequences [2, 3]. One
of our goals for Grace is to support the teaching of software engineering, at least during the first
two years of professional formation, and then to act as a bridge to the languages that software
engineers will use in practice [4]. At this stage in the project, we have a self-hosted Grace compiler
that compiles to C and JavaScript [9], and we are experimenting with IDE support and developing
teaching materials. We hope to begin small-scale teaching using Grace in the 2013–4 academic
year.

The contribution of this paper is our reflection on some of the tradeoffs that we have faced during
the design of Grace, in the spirit of Design Research [6]. Section 2 gives a brief overview of the
design of Grace, reported in more depth elsewhere [2, 3, 11]. The following sections then present
and discuss examples of particular language design tradeoffs in supporting software engineering.

2. Grace in a Nutshell

Grace is an imperative object-oriented language with block structure, single dispatch, and many
familiar features [2, 3]. A single object is created by executing a particular kind of Grace expression
called an object constructor:

object {
def name is public, readable = "Joe the Box"
var subBoxes := aList.empty
method topLeft { 100@200 } // @ is an infix operator
method bottomRight { 200@400 } // that creates a Point
method width { bottomRight.x − topLeft.x }
method height { bottomRight.y − topLeft.y }
method addComponent(w) { subBoxes.push(w) }
print "Joe the Box lives!"

}

The object created by executing this expression has methods topLeft, bottomRight, width, height,
and addComponent. It also has a method name that acts as an accessor for the constant field name;
this method is generated automatically because of the annotation is public, readable. The variable
field subBoxes could have been annotated as readable and writable, but since it was not, it is
private to the object. Creating this object has the side effect of executing the code inside the object
constructor, which in this case prints "Joe the Box lives!".

Grace’s class construct defines an object with a single method that contains an object construc-
tor; this method thus plays the role of a factory method:

http://www.gracelang.org

class aBox.named(n:String)origin(tl:Point)diagonal(d:Point) {
def name is public, readable = n
var subBoxes := aList.empty
method topLeft { tl }
method bottomRight { tl + d }
method width { bottomRight.x − topLeft.x }
method height { bottomRight.y − topLeft.y }
method addComponent(w) { subBoxes.push(w) }
print "{name} the Box lives!"

}
var joeTheBox := aBox.named("Joe") origin(100@200) diagonal(100@200)

The class is called aBox, and its factory method is called named()origin()diagonal(): Grace
allows method names to have multiple parts, like Smalltalk and Objective-C but without the colons.
The declarations and statements between the braces (lines 2 to 9) describe the object created by
this factory method; note how some of the methods capture state from the parameters of the factory
method. Two other features of Grace are shown incidentally: method arguments that are already
delimited, such as strings and numbers, need not be enclosed in parentheses, and strings can contain
Grace code enclosed by braces. The value of such a string is computed by evaluating the code
within the braces, requesting the resulting object to convert itself to a string, and interpolating that
string in the place of the brace expression.

The last line illustrates a use of this class. Executing the expression on the right of the assignment
will print "Joe the Box lives" and create a new object. The assignment will bind the variable
joeTheBox to the new object.

Classes are completely separate from types: the class aBox is not a type and does not implicitly
declare a type. The programmer may specify types if desired:

type Box = {
name −> String
topLeft −> Point
bottomRight −> Point
width −> Number
height −> Number
addComponent(w:Widget) −> Done

}
var joeTheBox:Box := aBox.named("Joe") origin(100@200) diagonal(100@200)

The type Done is like “unit”: it indicates that a method does not return a useful result. Grace types
are structural: an object has a type if it responds to all of the methods in that type, with the correct
argument and result types. It is not necessary for the object to have been “branded” with that type
when it was created. Along with methods, types may be included as components of objects.

Variable and constant bindings are distinguished by keyword: var declares a name with a vari-
able binding, which can be changed using the := operator, whereas def declares a name with a
constant binding, initialised using =, as shown here:

var currentWord := "hello"
def world = "world"
...
currentWord := "new"

The keywords var and def are used to declare both local variables and fields inside objects. Vis-
ibility annotations allow the programmer to control access to methods from outside an object by
marking them as public or confidential; the latter means accessible only to the object itself and
objects that inherit from it. As we saw in the initial examples, annotations can also be used to

create reader and writer methods on fields. Method requests without an explicit receiver are re-
solved either as requests on self, or as requests on outer, the object in the surrounding lexical
scope, on outer.outer, etc. If a receiverless request is ambiguous, the programmer must resolve
the ambiguity explicitly.

Grace includes a special syntax for creating anonymous first-class functions. We call them
blocks; other languages call them lambda expressions. Blocks are written between braces, and
may be thought of as containing code for deferred execution. A block may have arguments, which
are separated from the code by −>, so the successor function is {x −> 1+x}. A block can refer
to variables bound in the surrounding lexical scope, and returns the value of the last-evaluated
expression in its body.

The presence of blocks means that Grace’s control structures can be defined as in libraries as
methods. The familiar control structures, such as if...then...else and while...do, are defined in the
standard prelude, but an instructor or library designer may replace or add to them. Grace’s syntax
is designed so that control structures look familiar to users of other languages:

if (x > 0) then { x } else { −x }

for (node.children) do { child −>
process(child)

}

The use of braces and parentheses is not arbitrary: parenthesised expressions will always be eval-
uated exactly once, whereas expressions in braces are blocks, and may be evaluated zero, one, or
many times.

Grace code at the top-level (of a file, or of the read-eval-print loop) is treated as if it were
enclosed in an implicit object constructor. This allows methods and types to be defined at the top
level; moreover, any code written at the top level will be executed immediately. As a consequence,
Grace programs can be written in “script” form, without any object or class definitions at all, so
print "Hello, world" is a compete Grace program.

Finally, Grace’s module system provides support for dialects — supersets or subsets of the stan-
dard Grace language [10]. Naturally, dialects can extend the language by making extra definitions
available: by defining new methods, the designer of a dialect can provide what look (to the pro-
grammer) like new statements and operators. Perhaps more surprisingly, dialects can also restrict
the language: by providing extended static checkers, they can define and detect new classes of
errors, and can change the way that errors are reported. Dialects can be used to define language
subsets to aid novice programmers, as well as domain-specific languages customized for a partic-
ular purpose.

The idea of using families of language subsets to promote teaching and learning was introduced
by DrScheme [20], now DrRacket. Racket uses the name “language levels”: we use the term
“dialect” rather than “language level” because we imagine a lattice of languages rather than a
sequence. Unlike DrRacket’s languages, which are built using macros, Grace’s dialects are built
as libraries that provide new definitions and static checkers; this means that Grace dialects cannot
introduce new syntactic forms, or change the underlying language semantics. Dialects are one of
the main techniques we use to reconcile opposing requirements in language design; this use of
dialects is described in more detail in Section 8.

3. Syntactic consistency vs. semantic consistency

Consistency is an important design principle, and applies as much to programming language design
as to other kinds of design [13, 21]. Because students learning Grace will presumably transition
to “industrial strength” programming languages, consistency is important not only within Grace
itself, but also with respect to other programming languages. Thus, we chose to delimit Grace
blocks by curly braces because this makes Grace superficially similar to the C family of languages,
even though the semantics of Grace blocks are basically those of Smalltalk blocks — which are
delimited by square brackets.

Consistency as a principle operates at multiple levels of language design. The choice of block
delimiter is an instance of syntactic consistency, but we have also tried to consider semantic consis-
tency: any particular piece of syntax should have a single semantics, as much as possible. Staying
with delimiters, Grace’s if...then and for...do statements take two arguments. Like languages in
the C family, the first argument is in parentheses “()” and the second in braces “{}”. This syntax
happens to match the statement’s semantics: the first argument, the test in the if statement, will be
evaluated exactly once before the statement proper is invoked: the second argument is a block that
may be executed zero, one or several times.

if (x > 0) then { print "x is bigger than zero" }

Grace’s while...do statement does not follow this pattern: it takes two arguments, both of which
must be delimited by curly braces. This is because both arguments are blocks, which may be
executed repeatedly.

while {x > 0} do { print "x is bigger than zero for now"; x := x − 1 }

This design is syntactically inconsistent not only with Grace’s other control flow statements,
but also with the C language family generally. Here, Grace sacrifices syntactic consistency for
semantic consistency: arguments that are passed by value, which are evaluated before requesting a
method, are delimited by parentheses, whereas arguments passed by name, which may be evaluated
(or not) under the control of the requested method, are consistently delimited by braces. We accept
that this choice may make Grace marginally harder to learn, as students will have to learn the
different patterns of braces and parentheses, and harder to transfer from Grace to C-like languages.
We hope, however, that the overall simplification of the language, and particularly of its conceptual
model of argument passing, is worth the tradeoff.

4. Static vs. Dynamic Types

In Grace, declarations of local variables, methods and fields are not required to specify types.
Grace is gradually typed: omitted types of constants may be inferred, and omitted type of variables,
arguments and results are treated as the predefined type Dynamic. Thus, in the declaration of class
aBox in Section 2, methods width and height are treated as returning Dynamic, which conforms to
any static type, including Number. All requests on Dynamic expressions are dynamically checked,
as in C# [1]. In this way, Grace supports both statically and dynamically-typed code; indeed,
programmers can choose at the level of an individual declaration.

Within dynamically-typed code, types need not be mentioned at all, and so all discussion of the
concept of type can be delayed until late in the teaching sequence. When instructors do introduce
types, they may do so in the language that students are already using, as opposed to, for example,
starting teaching in Python and then being forced to transition to Java just so that types can be
discussed.

To help an instructor ensure that students do indeed move to using static type specifications,
a Grace dialect can be defined to require that all student programs written in that dialect have
type specifications associated with all declarations; a different dialect might prohibit all type dec-
larations [10]. Recall that Grace dialects cannot change the basic language semantics, or the
interpretation of core language constructs such as declarations. The full Grace language is itself
gradually typed, and the semantics of a program with no type specifications, partial specifications,
or full specifications is always clearly defined. The checkers that are part of a dialect definition can
be used to ensure that students use this flexibility in a disciplined way.

5. Explicit vs. Implicit Variable Declarations

Several contemporary scripting languages — even some, such as Python and JavaScript, that are
promoted for use in introductory programming courses — allow the implicit declaration of vari-
ables. In these languages, as in Fortran or Basic, it is not necessary to declare a variable; the same
syntactic form can be used to assign a new value to an existing variable, and to declare and initial-
ize a new variable. This means that programs can be simpler. Unfortunately, it also means that a
statement such as

countr := counter + delta

would declare a new variable countr rather than updating the existing variable counter.
In contrast, Algol, Pascal, and the C-family of languages require that the programmer declare

variables explicitly, as does Grace. In these languages, declarations also specify the type of the
variable, which may not then be changed by a subsequent assignment. Requiring explicit declara-
tions guards against programmers accidentally creating a new variable (for example, because of a
spelling mistake) when they intended to update an existing variable. Here is another case where
simplicity — having assignment statements also create variables — may make programs shorter,
and presumably easier to write; perhaps for this reason, most scripting languages have implicit
variable declarations. Yet contemporary software engineering practice prefers the more complex,
more verbose and less flexible solution with explicit variable declarations. Like most languages
since Pascal, Grace allows variables to be initialized at the point of declaration; constants must be
so initialized, since they cannot be assigned.

Grace also distinguishes between constants and variables, and requires explicit declarations for
both. Constants are initialized using the = symbol; while variables are initialized and assigned
using the := symbol.

def delta = 3 // declare and initialise a fresh constant
var count := 0 // declare and initialise a fresh variable
...
count := count + delta // assign to an existing variable

While this distinction may make the language slightly more complex, we consider the clear con-
ceptual separation worth the additional complexity. Also note that, in addition to reserving the
symbol = for constant (and type) declarations, and := for variable initialization and assignment, we
write the equality operator as ==. Again, we are willing to increase the syntactic overhead very
slightly in order to gain the semantic consistency of using separate symbols for separate concepts.

6. Information hiding vs. direct access

Information hiding has been recognized as an important software engineering practice for the last
forty years. Object-oriented languages typically support information hiding by controlling access

to an objects’ fields and methods. Typically, fields and methods may be private — accessible only
from within that object — or more accessible, perhaps from other objects of the same class, or
from objects defined within the same package, or defined in a particular program component.
Another of Grace’s design principles is to encourage software engineering best practice: well-
engineered programs should be as easy — or easier — to write than badly-engineered programs.
In this case, best practice would be to make an object’s variables, fields, and methods private
by default. Unfortunately, this default would make simple programs more difficult for novice
programmers to write. Consider the following example, which does nothing more than create an
object and then print it:

def joe = object {
var forename := "Joe"
var surname := "Bloggs"
var id := 234567
method asString {"Person: {forename} {surname} id:{id}"}

}

print "joe is {joe}." // error here

This example is erroneous because the “print” method requests joe.asString to compute the value
of the interpolated string. This request comes from outside the object; because methods are private
by default, the request will be denied.

The programmer can easily change the code to make the asString method accessible from out-
side by annotating it as “public”. Annotations can also be applied to definitions, where they can be
used to create reader methods, and to variable declarations, where they can be used to create reader
and writer methods.

def jose = object {
var forename is public, readable := "Jose"
var surname is public, readable := "Bloggs"
var id := 234567
method asString is public {"Person: {forename} {surname} id:{id}"}

}

print "jose' is {jose}." // now works

Annotations clutter the code, and mean that novices must learn one more thing before they can
successfully use an object. More significantly, requiring public annotations links the concept of
defining a method with the concepts of information hiding and and access control: because some
methods (or fields) have to be declared public before objects can be used at all, the concept of
information hiding must be learned before, or concurrently with, the concept of objects. Learning
concepts that are coupled in this way may be harder than learning independent concepts [18].
While making methods and fields private by default has better software engineering properties, it
may also make programming harder to learn.

Unlike some of the other tradeoffs described in this paper, this one seems harder to finesse via
libraries or dialects. Objects, methods, variables and constants are the primary constructs in Grace,
and their semantics, including their accessibility, must be defined in the core of the language. The
current compromise is to make methods public by default, and to allow private annotations to
restrict access. In contrast, variables and constants would be private by default, and annotations
would provide a succinct way of making them accessible. This would permit the unannotated
joe example above to run. While obviously inconsistent, the rationale behind this compromise is
that programmers’ first objects are generally simple; the only reason for providing those objects

with methods is to allow clients to request those methods. The need for private methods does not
become apparent until students start to write complex methods that need to be decomposed into
a series of requests of helper methods; at that point, the private annotation can be introduced. In
contrast, decisions about the concrete representation of even simple objects should be hidden from
their clients, so fields should be private by default.

7. Formal vs. informal reasoning about code

One of the key advantages of languages like Eiffel for teaching software engineering [14, 15] is
that they contain language constructs to support assertions, invariants, and variants. Like many
languages, Grace offers an assert keyword that takes a block and raises an error if the assertion
is invalid: unlike many languages, in Grace this defined in the standard library as a method that
accepts a block as an argument:

assert {(letters.size > 0) && (letters.size < 20)} // assertion

method assert (block) { // implementation of assert
if (! block.apply) then {error "Assertion Failed"}

}

Pre- and post-conditions and object invariants can also be provided in libraries by similar tech-
niques. Grace is not alone here, as both C# and Scala offer similar libraries — although their
implementation is more complex than the Grace version [7, 17].

Eiffel includes more support for formally specifying program properties than most other lan-
guages — certainly more than C# or Scala contracts, in that its loop statement allows programmers
to specify loop variants and invariants that are checked when the program runs. Using methods and
blocks, similar facilities can be implemented in Grace, as illustrated by this example:

method gcd(m, n)
// Euclid's Algorithm for greatest common divisor
{

assert {(m >= 0) & (n >= 0) & ((m != 0) | (n != 0))}
var a := max(m,n)
var b := min(m,n)
while {b != 0}

invariant { a >= b }
do {

def remainder = a % b
a := b
b := remainder }

variant {b}
return a

}

Furthermore, students can even inspect the code that implements these language features (17 lines
including a 4 line method header [16]). This is another illustration of how a small set of carefully-
chosen mechanisms can support a range of teaching approaches, without increasing the complexity
of the core language.

8. Dialects vs. a single, uniform language

Grace’s dialects are one of the key techniques that we have used to resolve tradeoffs in designing
for teaching programming versus teaching software engineering. As we have explained, dialects

are specialized languages that can provide extra definitions, but can also restrict the availability of
certain language features. As with Racket, Grace is less a single language than a “product line”
of languages tailored to particular educational contexts. Dialects allow students to be provided
with a language suited to their own stage of learning. Thus, a beginning student dialect might
make certain language features unavailable, and might thus be able to improve the quality of error
messages; this can be very helpful to students. Moreover, such a restricted dialect can be provided
without limiting the entire language to the same level. Dialects also allow specialized languages
for particular tasks or problem domains to appear first-class.

The very existence of dialects creates a new problem, however: there may be many incompatible
dialects, and thus programmers need to specify which dialect they are using. Should this specifi-
cation be explicit in the code, or implicit in the programming environment? Making the choice of
dialect explicit is arguably the right thing to do from a software engineering perspective, since it
makes a dependency (on the dialect definition) explicit in the source. This would place an addi-
tional burden on novices, who, at least at the beginning, are unlikely know about dialects at all.
Moving the selection of the dialect to a menu in the IDE makes things simpler for the novice —
until she reads ahead in the textbook, and tries an example program (whiten in a more advanced
dialect), only to find that it won’t compile.

We have not found a simple solution to this problem, but ameliorate it in two ways. Because
dialects can only define new methods and restrict the use of other features, a program in any dialect
is syntactically-valid Grace, and has a clear meaning, even if it does request methods that appear
to be undefined. While we require that the dialect in use be explicitly declared in the source code,
we keep dialect specifications very brief, to minimize the cognitive load for new programmers.
Moreover, an IDE for novice students can enforce the use of a particular dialect, at the discretion
of the instructor.

These tradeoffs have led us to a dialect system that works well in many cases, but could benefit
from more power in others. It works well for a dialect to enforce the use of loop invariants, since
all that dialect need do is define new control structure methods with invariant checks. A dialect to
enforce static typing also works well. However, a dialect cannot provide additional type inference,
beyond that provided by the base language. By using libraries to define dialects, rather than macros,
we have been able to preserve a uniform language while retaining the ability to extend it naturally.

The key features of Grace’s design that enable this specialization are not the details of the dialect
mechanism itself [10], but some more basic design choices that underpin dialects: defining every
control structure (syntactically and semantically) as a method request, using blocks to pass code
into those methods, and allowing nesting with lexical scope in all contexts. The power of these
choices shows the value of simple mechanisms used consistently.

9. Conclusion

Grace is a new object-oriented programming language that we are designing for use in education —
both for learning programming and for learning software engineering. We have described some of
the design decisions reflected in the current version of Grace, focussing on where those decisions
addressed tradeoffs between making programming easy and supporting a disciplined approach to
software engineering. We have argued that many — but not all — of these tradeoffs can be resolved
within a range of dialects that allow instructors to allow or disable particular language features.

We plan to begin experimental use of Grace for teaching in the 2013–14 academic year, and
hope to conduct systematic evaluations of Grace in that context. No doubt that experience will
continue to influence our design choices as the language continues to evolve.

Acknowledgment

This work is supported by the Royal Society of New Zealand Marsden Fund, and the School of
Engineering and Computer Science and Victoria University of Wellington, New Zealand.

References

[1] G. M. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to C#. In European Conference
on Object-Oriented Programming (ECOOP), 2010.

[2] A. P. Black, K. B. Bruce, M. Homer, and J. Noble. Grace: the absence of (inessential) difficulty. In
Onward!, 2012.

[3] A. P. Black, K. B. Bruce, M. Homer, J. Noble, A. Ruskin, and R. Yannow. Seeking Grace: A new
object-oriented language for novices. In ACM Conference on Computer Science Education (SIGCSE),
2013.

[4] A. P. Black, K. B. Bruce, and J. Noble. Panel: designing the next educational programming language.
In SPLASH/OOPSLA Companion, 2010.

[5] cplusplus.com. What was your first Programming language? http://www.cplusplus.com/forum/
lounge/48273/, Aug. 2011.

[6] N. Cross. Creative cognition in design: Processes of exceptional designers. In T. Hewett and T. Ka-
vanagh, editors, Creativity and Cognition. ACM Press, 2002.

[7] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract languages. In ACM Symposium on
Applied Computing (SAC), 2010.

[8] C. Hoare. Hints on programming language design. Technical Report AIM-224, Stanford Artificial
Intelligence Laboratory, 1973.

[9] M. Homer. Minigrace to JavaScript compiler. http://ecs.vuw.ac.nz/~mwh/minigrace/js/, 2011.
[10] M. Homer, J. Noble, K. B. Bruce, and A. P. Black. Modules and dialects as objects in grace. Technical

Report ECSTR13-02, School of Engineering and Computer Science, Victoria University of Welling-
ton, Mar. 2013. http://ecs.victoria.ac.nz/Main/TechnicalReportSeries.

[11] M. Homer, J. Noble, K. B. Bruce, A. P. Black, and D. J. Pearce. Patterns as objects in Grace. In ACM
Dynamic Language Symposium (DLS), 2012.

[12] K. Jensen and N. Wirth. Pascal User Manual and Report. Springer, 1975.
[13] B. J. MacLennan. Principles of Programming Languages: Design, Evaluation, and Implementation.

OUP, 1995.
[14] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[15] B. Meyer. Touch of Class: Learning to Program Well with Object and Contracts. Springer-Verlag,

2009.
[16] J. Noble. Laissez-parlent l’Eiffel! (Grace language weblog entry). http://gracelang.org/

applications/2013/01/28/laissez-parlent-leiffel, Jan. 2013.
[17] M. Odersky. Contracts for Scala. In Runtime Verification (RV), 2010.
[18] A. Robbins. Learning edge momentum. Computer Science Education, 20(1):37–71, Mar. 2010.
[19] The Joint Task Force on Computing Curricula. SE2004: Curriculum Guidelines for Undergraduate

Degree Programs in Software Engineering. http://sites.computer.org/ccse, Summer 2004.
[20] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen. Languages as libraries.

In ACM Conference on Programming Languages Design and Implementation (PLDI), 2011.
[21] R. Williams. The Non-Designer’s Design Book. Peachpit Press, 1994.

http://www.cplusplus.com/forum/lounge/48273/
http://www.cplusplus.com/forum/lounge/48273/
http://ecs.vuw.ac.nz/~mwh/minigrace/js/
http://gracelang.org/applications/2013/01/28/laissez-parlent-leiffel
http://gracelang.org/applications/2013/01/28/laissez-parlent-leiffel
http://sites.computer.org/ccse

	. Introduction
	. Grace in a Nutshell
	. Syntactic consistency vs. semantic consistency
	. Static vs. Dynamic Types
	. Explicit vs. Implicit Variable Declarations
	. Information hiding vs. direct access
	. Formal vs. informal reasoning about code
	. Dialects vs. a single, uniform language
	. Conclusion

