
Reflections on Verifying Software with Whiley

David J. Pearce and Lindsay Groves

School of Engineering and Computer Science
Victoria University of Wellington, New Zealand

{djp,lindsay}@ecs.vuw.ac.nz

September 6, 2013

Abstract

An ongoing challenge for computer science is the development of a tool which automatically
verifies programs meet their specifications, and are free from runtime errors such as divide-by-
zero, array out-of-bounds and null dereferences. Several impressive systems have been developed
to this end, such as ESC/Java and Spec#, which build on existing programming languages (e.g.
Java, C#). Unfortunately, such languages were not designed for this purpose and this significantly
hinders the development of practical verification tools for them. For example, soundness of veri-
fication in these tools is compromised. We have developed a programming language specifically
designed for verification, called Whiley, and an accompanying verifying compiler. In this paper,
we reflect on a number of challenges we have encountered in developing a practical system.

1 Introduction
The idea of verifying that a program meets a given specification for all possible inputs has been
studied for a long time. Hoare’s Verifying Compiler Grand Challenge was an attempt to spur new
efforts in this area to develop practical tools [1]. A verifying compiler “uses automated mathematical
and logical reasoning to check the correctness of the programs that it compiles”. Hoare’s intention
was that verifying compilers should fit into the existing development tool chain, “to achieve any
desired degree of confidence in the structural soundness of the system and the total correctness of
its more critical components”. For example, commonly occurring errors could be automatically
eliminated, such as: division-by-zero, integer overflow, buffer overruns and null dereferences.

The first systems that could be reasonably considered as verifying compilers were developed
some time ago, and include that of King [2], Deutsch [3], the Gypsy Verification Environment [4]
and the Stanford Pascal Verifier [5]. Following on from these, was the Extended Static Checker
for Modula-3 [6]. Later, this became the Extended Static Checker for Java (ESC/Java) — a widely
acclaimed and influential work in this area [7]. Building on this success was the Java Modeling
Language (and its associated tooling) which provided a standard notation for specifying functions in
Java [8]. More recently, the Spec# language [9, 10, 11] was developed on top of C#, whilst Dafny
was developed from scratch to simplify verification [12, 13].

Continuing this line of work, we are developing a verifying compiler for the Whiley program-
ming language [14, 15, 16, 17, 18]. Whiley is an imperative language designed to simplify veri-
fication. For example, Whiley uses unbound integer and rational arithmetic in place of e.g. IEEE
754 floating point (which is notoriously difficult to reason about [19]). Likewise, pure (i.e. mathe-
matical) functions are distinguished from those which may have side-effects. Our goal is to develop
a verifying compiler which can automatically establish a Whiley program as: correct with respect
to its declared specifications; and, free from runtime error (e.g. divide-by-zero, array index-out-
of-bounds, etc). More complex properties, such as establishing termination, are not considered
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(although would be interesting future work). Finally, the Whiley verifying compiler is released un-
der an open source license (BSD), can be downloaded from http://whiley.org and forked at
http://github.com/DavePearce/Whiley/.

Contribution. The seminal works by Floyd [20], Hoare [21], Dijkstra [22], and others provide a
foundation upon which to develop tools for verifying software. However, in developing a verifying
compiler for Whiley, we have encountered some gaps between theory and practice. In this paper, we
reflect on our experiences using Whiley to verify programs and, in particular, highlight a number of
challenges we encountered.

2 Language Overview
We begin by exploring the Whiley language and highlight some of the choices made in its design.
For now, we stick to the basic issues of syntax, semantics and typing and, in the following section,
we will focus more specifically on using Whiley for verification. Perhaps one of our most important
goals was to make the system as accessible as possible. To that end, the language was designed to
superficially resemble modern imperative languages (e.g. Python), and this decision has significantly
affected our choices.

Overview. Languages like Java and C# permit arbitrary side-effects within methods and state-
ments. This presents a challenge when such methods may be used within specifications. Systems
like JML and Spec# require that methods used in specifications are pure (i.e. side-effect free). An
important challenge here is the process of checking that a function is indeed pure.

A significant body of research exists on checking functional purity in object-oriented languages
(e.g. [23, 24, 25, 26]). Much of this relies on interprocedural analysis, which is too costly for
a verifying compiler. For the remainder, the ability to handle existing library code effectively is
severely limited. In Java, for example, even simple methods such as Object.equals() cannot
easily be shown as pure. This is because classes in the standard library have side-effecting equals()
implementations [23]. To address this, Whiley is a hybrid object-oriented and functional language
which divides into a functional core and an imperative outer layer. Everything in the functional
core can be modularly checked as being side-effect free. To make this possible, Whiley incorporates
first-class sets, lists and maps which are values (rather than mutable objects) and, hence, allow call-
by-value semantics (more on this below).

Value Semantics. The prevalence of pointers — or references — in modern programming lan-
guages (e.g. Java, C++, C#) has been a major hindrance in the development of verifying compilers.
Indeed, Mycroft recently argued that (unrestricted) pointers should be “considered harmful” in the
same way that Dijkstra considered goto harmful [27]. To address this, all compound structures in
Whiley (e.g. lists, sets, and records) have value semantics. This means they are passed and returned
by-value (as in Pascal, MATLAB or most functional languages). But, unlike functional languages
(and like Pascal), values of compound types can be updated in place. Whilst this latter point may
seem unimportant, it serves a critical purpose: to give Whiley the appearance of a modern imperative
language when, in fact, the functional core of Whiley is pure. This goes towards our goal of making
the language as accessible as possible.

Value semantics implies that updates to a variable only affect that variable, and that information
can only flow out of a function through its return value. Consider:

int f([int] xs):
ys = xs
xs[0] = 1
...

The semantics of Whiley dictate that, having assigned xs to ys as above, the subsequent update to
xs does not affect ys. Arguments are also passed by value, hence xs is updated inside f() and this

2



does not affect f’s caller. That is, xs is not a reference to a list of int; rather, it is a list of ints and
assignments to it do not affect state visible outside of f().

Whilst this approach may seem inefficient, a variety of techniques exist (e.g. reference count-
ing) to ensure efficiency (see e.g. [28, 29, 30]). Indeed, the underlying implementation does pass
compound structures by reference and copies them only when absolutely necessary.

Unbound Arithmetic. Modern languages typically provide fixed-width numeric types, such as
32bit twos-compliment integers, or 64-bit IEEE 754 floating point numbers. Such data types are
notoriously difficult for an automated theorem prover to reason about [19]. Systems like JML and
Spec# assume (unsoundly) that numeric types do not overflow or suffer from rounding. To address
this, Whiley employs unbounded integers and rationals in place of their fixed-width alternatives and,
hence, does not suffer the limitations of soundness discussed above.

Whilst performance is a concern here, Whiley is often able to encode an integer using, for ex-
ample, a single 32bit twos-complement int. This is achieved by exploiting the specifications that
are an integral part of Whiley programs. When the compiler can prove an integer will remain within
certain bounds, it is free to use a fixed-width type. For example, every string in Whiley is a list
of Unicode characters, whose range is between 0 and 1114111 — hence, a character can always be
encoded using a single 32bit twos-complement integer.

Flow Typing. An unusual feature of Whiley is the use of a flow typing system (see e.g. [31, 32, 17,
18]). This gives Whiley the look-and-feel of a dynamically typed language (e.g. Python). Further-
more, automatic variable retyping through conditionals is supported using the is operator (similar
to instanceof in Java) as follows:

define Circle as {int x, int y, int radius}
define Rect as {int x, int y, int width, int height}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:

return PI * s.radius * s.radius
else:

return s.width * s.height

A Shape is either a Rect or a Circle (which are both record types). The type test “s is Circle”
determines whether s is a Circle or not. Unlike Java, Whiley automatically retypes s to have type
Circle (resp. Rect) on the true (resp. false) branches of the if statement. There is no need to
explicitly cast variable s to the appropriate Shape before accessing its fields.

Union Types. Another unusual feature of Whiley is the use of union types (see e.g. [33, 34]),
which complement the flow type system. Consider the following example:

int|null indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
// idx has type null|int
if idx is int:

// idx now has type int
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
// idx now has type null
return [str]

3



Here, indexOf() returns the first index of a character in the string, or null if there is none. The
type int|null is a union type, meaning it is either an int or null. The system seamlessly ensures
null is never dereferenced because the type null|int cannot be treated as an int. Instead, one
must first check it is an int using e.g. “idx is int”.

Null references have provided a significant source of error in languages like Java and C#, and
their creation has been claimed as a billion dollar mistake [35]. The issue is that, in such languages,
one can treat nullable references as though they are non-null references [36]. However, many solu-
tions have been proposed (e.g. [37, 38, 39, 40, 41]), we find that Whiley’s union types provide an
elegant solution.

Negation Types. Retyping variables after type tests necessitates the use of negation types (see
e.g. [42]). A negation type !T defines the set of values not in T. The following example (albeit
artificial) illustrates:

int f(any x):
if x is {any field}:

return 0
else if x is {int field}:

return 1
else:

return 2

The above code does not type check. This is because the type of x on the false branch of the
first condition is !{any field}. Furthermore, {int field} is a subtype of {any field} and,
hence, not a subtype of !{any field}. Therefore, the compiler emits an error message stating that
“return 1 is unreachable”.

Effective Unions. A union of types of the same kind (e.g. a union of record types, or a union of
list types) can expose commonality and are called effective unions (e.g. an effective record type). In
the case of a union of records, fields common to all records are exposed. The following (simplified)
excerpt, taken from a PNG image decoder, illustrates:

define IHDR_TYPE as 0x52444849
define IHDR as {int type,int width,int height}
define IDAT as {int type,[byte] data}
define CHUNK as IHDR | IDAT

[CHUNK] decode([byte] data):
chunks = []
pos = 0
// parse chunks
while pos < |data|:

chunk,pos = parse(data,pos)
chunks = chunks + [chunk]

// check first chunk
assert |chunks| > 0 && chunks[0].type == IHDR_TYPE
// done
return chunks

CHUNK parse([byte] data, int pos):
...

A PNG file defines a list of CHUNKs, where the first CHUNK must be an instance of IHDR. The above
simply decodes the bytes of a PNG file into the list of CHUNKs. It also checks the first CHUNK is an
IHDR.

In the above, the expression chunks[0] has union type IHDR|IDAT (a.k.a type CHUNK). The
record types IHDR and IDAT differ and are not related through subtyping. However, they share a
common field, namely type. Thus, IHDR|IDAT defines an effective record type of {int type, ...}
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which means chunks[0].type is considered type safe. Finally, it’s interesting to note that the no-
tion of an effective record type is similar, in some ways, to that of the common initial sequence found
in C [43].

Recursive Data Types. Whiley provides recursive types which are similar to the abstract data
types found in functional languages (e.g. Haskell, ML, etc). For example:

define LinkedList as null | {int data, LinkedList next}

int length(LinkedList l):
if l is null:
return 0 // l now has type null

else:
return 1 + length(l.next) // l now has type {int data, LinkedList next}

Here, we again see how flow typing gives an elegant solution. More specifically, on the false branch
of the type test “l is null”, variable l is automatically retyped to {int data, LinkedList next}

— thus ensuring the subsequent dereference of l.next is safe. No casts are required as would be
needed for a conventional imperative language (e.g. Java). Finally, like all compound structures, the
semantics of Whiley dictates that recursive data types are passed by value (or, at least, appear to be
from the programmer’s perspective).

Executable Specifications. Verifying compilers employ automated theorem provers to check pro-
grams correctness. Unfortunately, undecidability and other practical constraints (e.g. timeouts)
present a challenge here, and we must anticipate that the theorem prover may not always reach a
conclusion. To deal with this, systems like JML and Spec# permit the use of runtime checking as
an alternative mechanism [8, 44]. This is a useful fall-back when the theorem prover cannot make
strong conclusions about the validity of a statement. Spec#, for example, inserts runtime checks
where necessary, and subsequently removes them if the theorem prover demonstrates it is safe to do
so.

To use runtime checking in this manner, one must ensure that all specifications are executable
(i.e. can be turned into runtime checks). In particular, the ability to perform unbound quantification
can easily break this requirement [45, 46]. The following example illustrates (using Whiley-like
syntax):

int f(int x, int y):
return a+b+c

assert all { x in int, y in int | f(x,y) == f(y,x) }

The assert statement requires that the function f(int,int) is commutative. This example
cannot be expressed in Whiley, because it is quantifying over the (infinite) set of all integers. As
such, the assertion cannot be converted into a runtime check — because it would require an infinite
amount of time to check1. In general, any attempt to quantify over an infinite set is referred to as
unbounded quantification. Unfortunately, both JML and Spec# permit unbound quantification which
prohibits the use of runtime checks in some cases [44, 9].

Whiley provides a strong guarantee every specification can be turned into a runtime check. In
particular, all quantification must be bounded as the following illustrates:

int sum([int] xs)
requires all { x in xs | x >= 0}, ensures $ >= 0:
...

This gives a specification for the sum() function which accepts a list of natural numbers (i.e.
non-negative integers) and produces a natural number. The quantification is bounded by the param-
eter xs and, hence, can be easily translated into a for-loop over its elements.

1Whilst it is true that integers in most languages have fixed-width representations, this means only that quantification over
integers is implicitly bounded in such languages. However, for other data types (e.g. collections), this is not the case.
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The choice to restrict Whiley to executable specifications means the language is strictly less ex-
pressive than, for example, JML. However, it does ensure a smooth transition to runtime checking
when the theorem prover cannot be conclusive about a given verification condition. More specifi-
cally: for each verification condition, either the automated theorem prover shows there definitely is
an error, or it shows there definitely is not an error, or it cannot draw a strong conclusion and, hence,
there maybe an error. Only in the latter case does the compiler resort to using a runtime check —
and it emits a warning to indicate this.

3 Verification
A key goal of the Whiley project is to develop an open framework for research in automated software
verification. As such, we now explore verification in Whiley.

Example 1 — Preconditions and Postconditions. The following Whiley code defines a function
accepting a positive integer and returning a non-negative integer (i.e. natural number):

int f(int x) requires x > 0, ensures $ >= 0 && $ != x:
return x-1

Here, the function f() includes a requires and ensures clause which correspond (respectively)
to its precondition and postcondition. In this context, $ represents the return value, and must be used
in the ensures clause. The Whiley compiler statically verifies that this function meets its specifica-
tion.

A slightly more unusual example is the following:

int f(int x) requires x >= 0, ensures 2*$ >= $:
return x

In this case, we have two alternate (and completely equivalent) definitions for a natural number. We
can see that the precondition is equivalent to the postcondition by subtracting $ from both sides. The
Whiley compiler is able to reason that these are equivalent and statically verifies that this function is
correct.

Example 2 — Conditionals. Variables in Whiley are described by their underlying type and those
constraints which are shown to hold. As the automated theorem prover learns more about a variable,
it automatically takes this into consideration when checking constraints are satisfied. For example:

int abs(int x) ensures $ >= 0:
if x >= 0:

return x
else:

return -x

The Whiley compiler statically verifies that this function always returns a non-negative integer. This
relies on the compiler to reason correctly about the implicit constraints implied by the conditional.
A similar, but slightly more complex example is that for computing the maximum of two integers:

int max(int x, int y)
ensures $ >= x && $ >= y && ($==x || $==y):

if x > y:
return x

else:
return y

Again, the Whiley compiler statically verifies this function meets its specification. Here, the body of
the function is almost completely determined by the specification — however, in general, this it not
the case.
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Example 3 — Bounds Checking. An interesting example which tests the automated theorem
prover more thoroughly is the following:

null|int indexOf(string str, char c):
for i in 0..|str|:

if str[i] == c:
return i

return null

In this case, the access str[i] must be shown as within the bounds of the list str. Here, the range
constructor X..Y returns a list of consecutive integers from X upto, but not including Y (and, futher-
more, if X >= Y then the empty list is returned). Hence, this function cannot cause an out-of-bounds
error and the Whiley compiler statically verifies this.

In fact, the specification for indexOf() could be made more precise as follows:

null|int indexOf(string str, char c)
ensures $ == null || (0 <= $ && $ < |str|):
...

In this case, we are additionally requiring that, when the return value is an int, then it is a valid
index into str. Again, the Whiley compiler statically verifies this is the case.

Example 4 — Loop Invariants. Another example illustrates the use of loop invariants in Whiley:

int sum([int] list)
requires all { item in list | item >= 0 },
ensures $ >= 0:

r = 0
for v in list where r >= 0:

r = r + v
return r

Here, a bounded quantifier is used to enforce that sum() accepts a list of natural numbers. A key
constraint is that summing a list of natural numbers yields a natural number (recall arithmetic is
unbounded and does not overflow in Whiley). The Whiley compiler statically verifies that sum()
does indeed meet this specification. The loop invariant is necessary to help the compiler generate a
sufficiently powerful verification condition to prove the function meets the post condition (more on
this later).

Example 5 — Recursive Structures. The Whiley language supports invariants over recursive
structures, as the following illustrates:

define Tree as null | Node

define Node as { int data, Tree lhs, Tree rhs } where
(lhs == null || lhs.data < data) &&
(rhs == null || rhs.data > data)

This defines something approximating the notion of an unbalanced binary search tree. Unfortunately,
the invariant permits e.g. data < lhs.rhs.data for a given tree node and, thus, is not sufficient
to properly characterise binary search trees. Whilst our focus so far has been primarily on array
programs and loop invariants, in the future we plan to place more emphasis on handling recursive
structures, such as binary search trees.

4 Hoare Logic
We now briefly review Hoare logic [21] and the weakest precondition transformer, before examining
in §5 a number of challenges we encountered in practice. Hoare logic provides some important
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Figure 1: Hoare Logic.

background to understanding how the Whiley verifying compiler works, and why certain difficulties
manifest themselves. Our discussion here is necessarily brief and we refer to Frade and Pinto for an
excellent survey [47].

4.1 Overview
The rules of Hoare logic are presented as judgements involving triples of the form:

{
p
}

s
{
q
}

.
Here, p is the precondition, s the statement to be executed and q is the postcondition. Figure 1
presents the rules of Hoare Logic which, following Whiley, we have extended to include explicit
loop invariants. To better understand these rules, consider the following example:{

x ≥ 0
}
x = x+ 1

{
x > 0

}
Here we see that, if x ≥ 0 holds immediately before the assignment then, as expected, it follows that
x > 0 holds afterwards. However, whilst this is intuitively true, it is not so obvious how this triple
satisfies the rules of Figure 1. For example, as presented it does not immediately satisfy H-ASSIGN.
However, rewriting the triple is helpful here:{

x+ 1 > 0
}
x = x+ 1

{
x > 0

}
The above triple clearly satisfies H-ASSIGN and, furthermore, we can obtain the original triple

from it via H-CONSEQUENCE (i.e. since x+ 1 > 0 =⇒ x ≥ 0). The following illustrates a more
complex example:

int f(int i) requires i >= 0, ensures $ >= 10:{
i ≥ 0

}
while i < 10 where i >= 0:{

i < 10 ∧ i ≥ 0
}

i = i + 1{
i ≥ 0

}
{
i ≥ 10 ∧ i ≥ 0

}
return i

Here, we have provided the intermediate assertions which tie the Hoare triples together. In essence,
we have verified that this function meets its specification. Note that this does not prove the function
terminates (although we can see that it does) and, in general, the Whiley system does not establish
termination (although this is interesting future work).
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4.2 Verification Condition Generation
Automatic program verification is normally done with a verification condition generator [7]. This
converts the program source into a series of logical conditions — called verification conditions —
to be checked by the automated theorem prover. There are two approaches: propagate forward from
the precondition; or, propagate backwards from the postcondition. We now briefly examine these in
more detail.

Weakest Preconditions. Perhaps the most common way to generated verification conditions is
via the weakest precondition transformer [48]. This determines the weakest precondition (written
wp(s,q)) that ensures a statement s meets a given postcondition q. Roughly speaking, this corre-
sponds to propagating the postcondition backwards through the statement. For example, consider
verifying this triple: {

x ≥ 0
}
x = x+ 1

{
x > 0

}
Propagating x > 0 backwards through x = x+ 1 gives x+ 1 > 0 via H-ASSIGN. From this, we

can generate a verification condition to check the given precondition implies this calculated weakest
precondition (i.e. x ≥ 0 =⇒ x+ 1 > 0). To understand this process better, let’s consider a more
concrete example:

int f(int x) requires x >= 0, ensures $ >= 0:
x = x - 1
return x

The implementation of this function does not satisfy its specification. Using weakest preconditions
to determine this corresponds to the following chain of reasoning:

x ≥ 0 =⇒ wp(x = x− 1, x ≥ 0)
↪→ x ≥ 0 =⇒ x− 1 ≥ 0

↪→ ⊥

Here, the generated verification condition is x ≥ 0 =⇒ wp(x = x− 1, x ≥ 0). This is then re-
duced to a contradiction (e.g. by the automated theorem prover) which indicates the original program
did not meet its specification.

Strongest Postconditions. By exploiting Floyd’s rule for assignment [20], an alternative formu-
lation of Hoare logic can be developed which propagates in a forward direction and, thus, gives
a strongest postcondition transformer [49, 47]. This determines the strong postcondition (written
sp(p,s)) that holds after a given statement s with pre-condition p. For example, propagating x = 0

forwards through x = x+ 1 yields x = 1. Using strongest postconditions to verify functions is sim-
ilar to using weakest preconditions, except operating in the opposite direction. Thus, for a triple
{p} s {q}, we generate the verification condition sp(p, s) =⇒ q. For example, consider:{

x = 0
}
x = x+ 1

{
x > 0

}
In this case, the generated verification condition will be x = 1 =⇒ x > 0 (which can be trivially
established by an automated theorem prover).

5 Experiences
In the previous section, we outlined the process of automatic verification using Hoare logic. This
was the starting point for developing our verifying compiler for Whiley. However, whilst Hoare logic
provides an excellent foundation for reasoning about programs, there remain a number of hurdles to
overcome in developing a practical tool. We now reflect on our experiences in this endeavour using
examples based on those we have encountered in practice.
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5.1 Loop Invariants
The general problem of automatically determining loop invariants is a hard algorithmic challenge
(see e.g. [50, 51, 52]). However, we want to cover as many simple cases as possible to reduce
programmer burden. We now examine a range of simple cases that, in our experience, appear to
occur frequently.

Loop Invariant Variables. From the perspective of a practical verification tool, the rule H-WHILE
from Figure 1 presents something of a hurdle. This is because it relies on the programmer to com-
pletely specify the loop invariant even in cases where this is unnecessary. For example, consider the
following Whiley program:

int f(int x) requires x > 0, ensures $ >= 10:
i = 0
while i < 10 where i >= 0:

i = i + x
return i

Intuitively, we can see this program satisfies its specification. Unfortunately, this program cannot be
shown as correct under the rules of Figure 1 because the loop invariant is too weak. Unfortunately,
rule H-WHILE only considers those facts given in the loop condition and the declared loop invariant
— hence, all information about x is discarded. Thus, under H-WHILE, the verifier must assume that
x could be negative within the loop body — which may seem surprising because x is not modified
by the loop!

To verify this program under rule H-WHILE, the loop invariant must be strengthened as follows:

int f(int x) requires x > 0, ensures $ >= 10:
i = 0
while i < 10 where i >= 0 && x >= 0:

i = i + x
return i

Now, one may say the programmer made a mistake here in not specifying the loop invariant
well enough; however, our goal in developing a practical tool is to reduce programmer effort as
much as possible. Therefore, in the Whiley verifying compiler, loop invariant variables are handled
automatically so that the programmer does not need to respecify their invariants.

Simple Synthesis. As mentioned above, generating loop invariants in the general case is hard.
However, there are situations where loop invariants can easily be determined. The following illus-
trates an interesting example:

int sum([int] xs)
requires all { x in xs | x >= 0 }, ensures $ >= 0:

i = 0
r = 0
while i < |xs|:

r = r + xs[i]
i = i + 1

return r

This function computes the sum of a list of natural numbers, and returns a natural number. The
question to consider is: did the programmer specify the loop invariant properly? Unfortunately, the
answer again is: no. In fact, a loop invariant needs to be given explicitly as follows:

...
while i < |xs| where i >= 0 && r >= 0:

r = r + xs[i]
i = i + 1

return r
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Here, we can see that an explicit loop invariant has been given through a where clause. The
need for this is frustrating as, intuitively, it is trivial to see that it holds. In the future, we hope to
automatically synthesize simple loop invariants such as this.

Constrained Types. Whiley also supports the notion of a constrained type as follows:

define nat as int where $ >= 0

Here, the define statement includes a where clause constraining the permissible values for the
type ($ represents the variable whose type this will be). Thus, nat defines the type of non-negative
integers (i.e. the natural numbers)

An interesting aspect of Whiley’s design is that local variables are not explicitly declared. This
gives Whiley the look-and-feel of a dynamically typed language and goes towards our goal of mak-
ing the language accessible. In fact, permitting variable declarations would provide an alternative
solution to the above issue with sum():

int sum([int] xs)
requires all { x in xs | x >= 0 }, ensures $ >= 0:

nat i = 0
nat r = 0
while i < |xs|:

r = r + xs[i]
i = i + 1

return r

Here, variable declarations are used to restrict the permitted values of variables i and r through-
out the function. Unfortunately, at the moment, the Whiley language does not permit local variable
declarations and, hence, the above is invalid. In the future, we plan to support local variable decla-
rations for this purpose.

Loop Invariant Properties. Whilst our verifying compiler easily handles loop invariant variables,
there remain situations when invariants need to be needlessly respecified. Consider the following:

[int] add([int] v1, [int] v2)
requires |v1| == |v2|, ensures |$| == |v1|:

i = 0
while i < |v1| where i >= 0:

v1[i] = v1[i] + v2[i]
i = i + 1

return v1

This example adds two vectors of equal size. Unfortunately, this again does not verify under the
rule H-WHILE because the loop invariant is too weak. The key problem is that v1 is modified in
the loop and, hence, our above solution for loop invariant variables does not apply. Following rule
H-WHILE, the verifying compiler can only reason about what is specified in the loop condition and
invariant. Hence, it knows nothing about the size of v1 after the loop. This means, for example, it
cannot establish that |v1| == |v2| holds after the loop. Likewise (and more importantly in this
case), it cannot establish that the size of v1 is unchanged by the loop (which we refer to as a loop
invariant property). Thus, it cannot establish that the size of the returned vector equals that held in
v1 on entry, and reports the function does not meet its postcondition.

Unfortunately, in the Whiley language developed thus far, it is impossible to specify that the
size of v1 is unchanged by the loop. This is because it requires the notion of a loop variant. The
following illustrates a hypothetical syntax for this in Whiley:

...
while i < |v1| where i >= 0 && |v1‘| == |v1|:

v1[i] = v1[i] + v2[i]
i = i + 1

return v1
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Here, v1‘ respents the value of v1 on the previous iteration. Unfortunately, this syntax is not yet
supported in Whiley (although it is planned for the future).

Finally, it is possible to specify a loop invariant which allows the above function to be verified
by our compiler. Since v2 is not modified by the loop, and |v1| == |v2| held on entry, we can
use i >= 0 && |v1| == |v2| as the loop invariant.

Overriding Invariants. In most cases, the loop condition and invariant are used independently
to increase knowledge. However, in some cases, they need to be used in concert. The following
illustrates:

[int] create(int count, int value)
requires count >= 0, ensures |$| == count:

r = []
i = 0
while i < count:

r = r + [value]
i = i + 1

return r

This example uses the list append operator (i.e. r + [value]) and is surprisingly challenging.
An obvious approach is to connect the size of r with i as follows:

...
while i < count where |r| == i:

r = r + [value]
i = i + 1

return r

Unfortunately, this is insufficient under the rule H-WHILE from Figure 1. This is because, after
the loop is complete, the rule establishes the invariant and the negated condition. Thus, after the
loop, we have i ≥ count ∧ |r| == i, but this is insufficient to establish that |r| == count. In fact,
we can resolve this by using an overriding loop invariant as follows:

...
while i < count where i <= count && |r| == i:

r = r + [value]
i = i + 1

return r

In this case, i ≥ count ∧ i ≤ count ∧ |r| == i holds after the loop, and the automated theo-
rem prover will trivially establish that |r| == count.

5.2 Error Reporting
Error reporting is an important practical consideration for any verification tool, as we want error mes-
sages which are as meaningful, and precise, as possible. We now consider how the two approaches
to verification condition generation affect this.

Weakest Preconditions. An unfortunate side-effect of operating in a backwards direction, as
wp(s, q) does, is that reporting useful errors in the source program is more difficult. For exam-
ple, consider this simple example which performs an integer division:

int f(int x) requires x > 0, ensures $ > 0:
x = 1 / (x - 1)
return x

This function contains a bug which can cause a division-by-zero failure (i.e. if x==1 on entry). Using
wp(s, q), a single verification condition is generated for this example:
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x > 0 =⇒ (x− 1 6= 0 ∧ 1

x− 1
> 0) (1)

A modern automated theorem prover (e.g. [53, 54]) will quickly establish this condition does not
hold. At this point, the verifying compiler should report a helpful error message. Unfortunately,
during the weakest precondition transform, information about where exactly the error arose was
lost. To identify where the error occurred, there are two intrinsic questions we need to answer:
where exactly in the program code does the error arise? and, which execution path(s) give rise to
the error? The wp(s, q) transform fails to answer both because it generates a single verification
condition for the entire function which is either shown to hold, or not [55, 56].

One strategy for resolving this issue is to embed attributes in the verification condition iden-
tifying where in the original source program particular components originated [7, 57, 58, 55, 59].
Unfortunately, this requires specific support from the automated theorem prover (which is not always
available). Another approach is to try and split the generated weakest precondition into those com-
ponents corresponding to different execution paths (for example, there are two clear disjuncts in our
example above). In general, this is challenging because the generated conditions can be arbitrarily
complex [57].

Strongest preconditions. Instead of operating in a backwards direction, our experience suggests
it is inherently more practical to generate verification conditions in a forwards direction (and there
is anecdotal evidence to support this [47]). Recall that this corresponds to generating strongest
postconditions, rather than weakest preconditions. The key advantage is that verification conditions
can be emitted at the specific points where failures may occur.

In the above example, there are two potential failures: firstly, 1/(x-1) should not cause a
division-by-zero; secondly, the postcondition $ > 0 must be met. A forward propagating verifi-
cation condition generator can generate separate conditions for each potential failure. For example,
it can emit the following verification conditions:

x > 0 =⇒ x− 1 6= 0 (2)

x > 0 =⇒ 1

x− 1
> 0 (3)

Each of these can be associated with the specific program point where it originated and, in the
case it cannot be shown, an error can be reported at that point. For example, since the first verification
condition above does not hold, an error can be reported for the statement x = 1/(x− 1). When
generating verification conditions based on wp(s, q), it is hard to report errors at the specific point
they arise because, at each point, only the weakest precondition for subsequent statements is known.

6 Related Work
Hoare provided the foundation for formalising work in this area with his seminal paper introducing
Hoare Logic [21]. This provides a framework for proving that a sequence of statements meets its
postcondition given its precondition. Unfortunately Hoare logic does not tell us how to construct
such a proof; rather, it gives a mechanism for checking a proof is correct. Therefore, to actually
verify a program is correct, we need to construct proofs which satisfy the rules of Hoare logic.

The most common way to automate the process of verifying a program is with a verification
condition generator. As discussed in §4.2, such algorithms propagate information in either a forwards
or backwards direction. However, the rules of Hoare logic lend themselves more naturally to the
latter [47]. Perhaps for this reason, many tools choose to use the weakest precondition transformer.
For example, the widely acclaimed ESC/Java tool computes weakest preconditions [7], as does the
Why platform [60], Spec# [61], LOOP [62], JACK [59] and SnuggleBug [63]. This is surprising
given that it leads to fewer verification conditions and, hence, makes it harder to generate useful error
messages (recall our discusion from §4.2). To workaround this, Burdy et al. embed path information
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in verification conditions to improve error reporting [59]. A similar approach is taken in ESC/Java,
but requires support from the underlying automated theorem prover [54]. Denney and Fischer extend
Hoare logic to formalise the embedding of information within verification conditions [57]. Again,
their objective is to provide useful error messages.

A common technique for generating verification conditions is to transform the input program into
passive form [6, 7, 61, 64]. Here, the control-flow graph of each function is converted using standard
techniques into a reducible (albeit potentially larger) graph. This is then further reduced by elimi-
nating loops to leave an acyclic graph, before a final transformation into Static Single Assignment
form (SSA) [65, 66]. The main advantage is that, after this transformation, generating verification
conditions becomes straightforward. Furthermore, the technique works well for unstructured control
flow and can be tweaked to produced compact verification conditions [67, 68, 69, 70]. However, an
important issue (from the perspective of this paper) is that this makes it somewhat challenging to
formalise the whole process.

Dijkstra’s Guarded Command Language provides an alternative approach to the generation of
verification conditions [22]. In this case, the language is far removed from the simple imperative
language of Hoare logic and, for example, contains only the sequence and non-deterministic choice
constructs for handling control-flow. There is rich history of using guarded commands as an inter-
mediate language for verification, which began with the ECS/Modula-3 tool [6]. This was continued
in ESC/Java and, during the later development of Spec#, a richer version (called Boogie) was de-
veloped [11]. Such tools use guarded commands as a way to represent programs that are in passive
form (discussed above) in a human-readable manner. As these programs are acyclic, the looping
constructs of Dykstra’s original language are typically ignored.

Finally, it is worth noting that Frade and Pinto provide an excellent survey of verification condi-
tion generation for simple WHILE programs [47]. They primarily focus on Hoare Logic and various
extensions, but also explore Dijkstra’s Guarded Command Language. They consider an extended
version of Hoare’s While Language which includes user-provided loop invariants. They also present
an algorithm for generating verification conditions based on the weakest precondition transformer.

7 Conclusion
In this paper, we have reflected on our experiences using the Whiley verifying compiler. In particular,
we have identified a number of practical considerations for any verifying compiler which are not
immediately obvious from the underlying theoretical foundations.
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