
1

Evolutionary Multi-Objective Optimization for
Web Service Location Allocation

Boxiong Tan, Hui Ma, Yi Mei, and Mengjie Zhang

Abstract—With the ever increasing number of functional similar web services being available on the Internet, the market competition is
becoming intense. Web service providers realized that good Quality of Service (QoS) is a key of business success and low network
latency is a critical measurement of good QoS. Because network latency is related to geometric location, a straightforward way to
reduce network latency is to allocate services to proper locations. Hence, it is necessary to provide an effective web services allocation
algorithm to WSPs. In this paper, we model the Web service location allocation problem as a multi-objective optimization problem -
minimizing overall network latency and total cost. We develop a new PSO-based algorithm with rounding function approach to provide
a set of quality of solutions. The result shows that the new algorithm could provide diverse solutions. In addition, the new algorithm has
good performance regardless of increasing problem size.

Index Terms—Web service location allocation, Quality of Service, Evolutionary Computation, Particle Swarm Optimization.

✦

1 INTRODUCTION

IN recent years, service-oriented computing (SOC) enables
software applications to be developed in an agile and

cost efficient way [?]. Web services are well defined, self-
contained modules that provide standard business function-
ality and can be accessed via the Internet [?]. With the ever
increasing number of functional similar web services being
available on the the Internet, the Web Service Providers
(WSPs) are trying to improve the quality of service (QoS)
to become competitive in the market. QoS, also known as
non-functional requirements to web service, is the degree to
which a web service meets specified requirements or user
needs [?], such as response time, security and availabil-
ity. Among numerous QoS measurements, service response
time is a critical factor for many real-time services, e.g. traffic
service or finance service.

Service response time has two components: transmission
time (variable with message size) and network latency [?].
Study [?] shows that network latency is a significant com-
ponent of web service response delay. Ignoring network
latency will underestimate response time by more than 80
percent [?], since network latency is related to network
topology as well as physical distance [?]. To reduce the
network latency, large web service providers like Google,
Facebook or Microsoft have their own high-bandwidth data
centers. The majority of WSPs can not afford to build a
data center, therefore they rent servers provided by Web
Server Hosting Providers (WSHPs). WSPs need to allocate
their services wisely so that the overall network latency
is minimized. According to a popular web traffic analyz-
ing company Alexa, 96% of top one million web services
were hosted in heterogeneous server clusters or co-location
centers [?] that were widely distributed across different
geographic regions. Hence, it is necessary to provide an
effective web services allocation guide to WSPs so that they

• School of Engineering and Computer Science, Victoria University of
Wellington, PO Box 600, Wellington 6140, New Zealand.
E-mail: {boxiong.tan, hui.ma, mengjie.zhang}@ecs.vuw.ac.nz

can be benefited. This gives rise of the Web service location
allocation (WSLA) problem.

The WSLA is a very challenging problem. It is NP-hard
due to its huge searching space. Therefore, it is impractical
to find the optimal solution when the number of services
and the locations are huge. The WSLA problem is essential
a multi-objective optimization problem [?] for which there
are two conflicting objectives, to minimize latency and total
cost. Multi-objective Evolutionary Optimization Algorithm
(MOEA) methodologies are ideal for solving multi-objective
optimization problems [?], since MOEAs work with a pop-
ulation of solutions. With an emphasis on moving towards
the true Pareto-optimal region, a MOEA algorithm can be
used to find multiple Pareto-optimal solutions in one single
simulation run [?].

Previous researches [?], [?] use integer programming and
greedy algorithm to solve this problem. However, these
approaches are either easy to be stuck at local optima or per-
forms poorly when problem size increases. Various multi-
objective optimization algorithms have been proposed in
the past. [?], [?] discover that Particle Swarm Optimiza-
tion (PSO)-based multi-objective optimization algorithms
has the same or better effectiveness as the Genetic Algo-
rithm (GA)-based multi-objective optimization algorithms
but with significantly better computational efficiency (less
function evaluations). Therefore, PSO-based algorithms are
considered to solve the problem.

In our previous work [?] on Web service location allo-
cation, we study the performance of applying three algo-
rithms, Binary PSO (BPSO), Non-Dominated Sorting PSO
(NSPSO), and NSGA-II (a Genetic Algorithm (GA)-based
multi-objective optimization algorithm) to the problem of
WSLA. We find that there are two major shortcomings in
BPSO, NSPSO and NSGA-II. The first one is their perfor-
mances drop rapidly when the dataset increases. The second
shortcoming is that the solutions are not diverse enough.
Multi-objective particle swarm optimization with crowding
distance (MOPSOCD) is developed in [?] to produce a well-

2

distributed set of non-dominated solutions. MOPSOCD has
two desired features: archive and mutation. These features
make the algorithm to have a strong ability to avoid stuck-
ing at local optima while maintaining an uniformly non-
dominated set. Based on MOPSOCD, in this paper we de-
velop a new binary multi-objective PSO with crowding dis-
tance approach (BMOPSOCD) to solve the WSLA problem.
We introduce a new mechanism of rounding to improve
the original MOPSOCD. The rounding function method is a
mechanism that makes a continuous algorithm compatible
with discrete problems.

The overall goal is to develop a new binary multi-
objective PSO-based approach to the WSLA problem by con-
sidering two potentially conflicting objectives - minimizing
cost and minimizing network latency. To accomplish this
goal, we will achieve the following objectives:

1) To design rounding strategies for transforming con-
tinuous PSO to binary PSO;

2) To develop a new multi-objective PSO approach that
can produce a set of solutions with good diversity
and can perform well when problem sizes increase;

3) To evaluate our proposed approach by comparing it
with previous approaches using some experiments.

The paper is organized as follows. Section ?? reviews
existing works and various PSO approaches and provides
background knowledge of solving the problem. Section ??
describe the WSLA problem with formal models. Section ??
presents our approach of BMOPSOCD. Section ?? provides
a conclusion and discusses future work.

2 BACKGROUND

2.1 Related Work

Most of the researchers treat WSLA problem as a single
objective problem. [?], [?] try to solve the problem by using
integer linear programming techniques. In particular, [?]
solves this problem by employing greedy and linear relax-
ation. Researches on network virtualization [?], [?] employs
greedy algorithms to allocate virtual machines (VMs) in the
data center so that the requirements of network bandwidth
are met. [?] presents a multi-layer and integrated fashion
through a convex integer programming formulation. The
major drawback of greedy algorithm is that it is easy to be
stuck at local optima. Integer linear programming is well-
known as not scaling very well. It performs poorly when
the number of variables is large.

Huang [?] proposes an enhanced genetic algorithm
(GA)-based approach on WSLA. He models the problem as
a single objective problem with respect to network latency.
In particular, the position of a web service in a Web service
composition workflow is considered in his model. Kessaci
[?] proposes MOGA-CB for minimizing cost of VMs instance
and response time. [?] proposes a framework - Green Mon-
ster, to dynamically move web services across Internet data
centers for reducing their carbon footprint while maintain-
ing their performance. Green monster applies a modified
version of NSGA-II algorithm [?] with an additional local
search process.

As shown from above previous researchers have studied
the WSLA problem with single-objective algorithm, linear

programming technique and greedy algorithm. These ap-
proaches have many obvious disadvantages. WSLA prob-
lem in nature is a multi-objective problem which should
be addressed by multi-objective algorithms. In our pre-
vious work [?] we develop two PSO-based approaches,
one with weighted-sum fitness function (named WSPSO),
and the other using the fast Non-dominate sorting scheme
(named NSPSO), for solving the WSLA problem. We study
the performance of WSPSO, NSPSO and that of NSGA-
II, one of the most commonly used multi-objective genetic
algorithms with experimental evaluations. Our evaluation
results show that both WSPSO and NSPSO outperform
NSGA-II while NSPSO achieved a more diverse set of
solutions that WSPSO. However, the performance of all the
three approaches decrease while working on large datasets.

2.2 Particle Swarm Optimization (PSO)

PSO was proposed by Kennedy and Eberhart in 1995 [?].
It is a population-based meta-heuristic algorithm inspired
by the social behavior of birds and fishes. In PSO, each
individual is called a particle which flying around the search
space. The underlying phenomenon of PSO is optimized
by social interaction where particles sharing information to
direct their movement.

PSO is based on the principle that each solution can
be represented as a particle. At initial state, each particle
has a random initial position in the search space which is
represented by a vector xi = (xi1, xi2, . . . , xiD), where D
is the dimensionality of the search space. Each particle has
a velocity, represented as vi = (vi1, vi2, . . . , viD) which is
limited by a predefined maximum velocity, vmax and vid
∈ [−vmax, vmax]. During the search process, each particle
maintains a record of previous best performance, called
pbest. The best position of its neighbors is also recorded,
which is gbest. The position and velocity of each particle
are updated according to the following equations:

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w∗vtid+c1∗r1i∗(pid−xt

id)+c2∗r2i∗(ppg−xi
id) (2)

In the two equations, t shows the tth iteration. d ∈ D
shows the dth dimension. w is the inertia weight used to
balance the local search and global search abilities of PSO.
c1 and c2 are acceleration constants. r1i and r2i are random
constants uniformly distributed in [0, 1]. pid and pgd denote
the values of pbest and gbest in dth dimension.

PSO was originally developed to address continuous
optimization problems with a single objective. The repre-
sentation for both position and velocity of a particle in PSO
is a vector of real numbers. However, this representation
is not suitable for many discrete optimization problems. To
address the discrete problem, in 1997 Kennedy and Eberhart
developed a binary particle swarm optimization (BPSO) [?].
In BPSO, the position of each particle is a vector of binary
numbers, which are restricted to 1 or 0.

Several multi-objective optimization algorithms are
based on PSO such as Multi-objective PSO (MOPSO) [?],
and Non Dominated Sorting PSO (NSPSO) [?]. [?] studies
the performance of four multi-objective algorithms, NSGA-
II [?], PAES [?], Micro-GA [?] and MOPSO, and shows that

3

MOPSO is most capable to generate the best set of non-
dominated solutions close to the true Pareto front but with
low computational cost. To improve the diversity of non-
dominated solutions, Raquel et al. [?] propose a MOPSOCD
extended from the MOPSO. The mechanism of crowding
distance is incorporated into the algorithm on global best
selection of an external archive of non-dominated solutions.
Due to its competitive of generating a well-distributed set
of non-dominated solutions, in this paper we apply MOP-
SOCD to solve the WSLA problem.

3 PRELIMINARY

In this work we considers the WSLA as a multi-objective
problem with two potentially conflicting objectives, mini-
mizing cost and network latency. In this section, we first
describe the WSLA problem in detail. Then we introduce
matrices for modelling the input and output information of
the problem.

To solve the WSLA problem we consider a set of user
centers U = {U1, . . . , Um} and a set of candidate locations
A = {A1, . . . , An}. A user center can be a centre location of
a user-centered area. Candidate locations are the geographic
location that are suitable to deploy Web services, e.g., the lo-
cations of servers hosting Web services. A service providers
need to deploy a set of Web services W = {W1, . . . ,Ws},
each of which to be deployed to at lease one location. Note
that a Web service can be deployed to multiple locations
for the benefit of reducing service response time. For each
Web service Wi ∈ W and each candidate location Aj ∈ A,
there is a deployment cost Cij induced by deploying service
Wi to location Aj . For each user centre Uk ∈ U and each
candidate location Aj ∈ A, there is a latency Ljk, which
affects the response time from the location Aj to the user
center Uk. It normally depends on the distance between two
geographical locations. Each Web service is invoked from a
user center Uk ∈ U with an invocation frequency Fik . Given
the information above, WSLA is to design an allocation plan
that allocate a set of services W = {W1,W2, . . . ,Ws} to
set of candidate locations A = {A1, A2, . . . , An} so that
the total deployment cost f1 and network latency f2 is
minimized. Total deployment cost f1 and total network
latency f2 can be calculated as follows:

f1 =
s

∑

1=1

n
∑

j=1

Cijxij , (3)

f2 =
s

∑

i=1

m
∑

k=1

Fjkrik (4)

where xij takes 1 if service Wi is allocated to location Aj ,
and 0 otherwise. rik stands for the response time of service
Wi to the center Uk, which is calculated as

rik = min{Ljk | j ∈ {1, 2, ..., k} and xij = 1} (5)

WSLA has the following two objective functions and one
constraint.

minimize f1 =
s

∑

1=1

n
∑

j=1

Cijxij , (6)

minimize f2 =
s

∑

i=1

m
∑

k=1

Fikrik, (7)

subject to
n
∑

j=1

xij > 1, ∀i ∈ 1, · · · , s

xij ∈ 0, 1, ∀i ∈ 1, · · · , s, ∀j ∈ 1, · · · , n

(8)

In this paper, we will use the following matrices to model
the above mentioned information.

Matrices
L server network latency matrix L = {Ljk}
A service location matrix X = {xij}
F service invocation frequency matrix F = {Fik}
C cost matrix C = {Cij}
R user response time matrix R = {rik}

A service invocation frequency matrix, F = [Fik], is used
to record services invocation frequencies from user centers
to services. A cost matrix, C = [Cij], is used to record
the fixed deployment fees at candidate locations, where
Cij is an integer that indicates the fixed deployment fee
at a candidate location. A service location matrix X = [xij]
represents location allocation plan, with xij representing
wether a service Wi is deployed at a candidate location Aj

or not. That is,

aij =

{

1 service s deploy in location j

0 otherwise

For each given service location allocation matrix, A
response time matrix R = [rik] can be computed to get the
shortest response time of accessing service Wi from user
center Uk. The aim of WSLA is find a location allocation
matrix X = [xij] such that it results minimal overall net-
work latency and overall deployment cost.

For example assume we are given the following matri-
ces, F,L,C we can calculate total cost and latency for a
given allocation plan represented by the allocation matrix
X below.

F =







120 35 56

14 67 24

85 25 74






L =







0 5.776 6.984

5.776 0 2.035

0.984 1.135 2.3







C =







130 80 60

70 50 30

40 78 54






X =







0 1 0

0 0 1

1 1 0







We can use the two example matrices L and X presented
above to construct the response time matrix R. For each
service Wi, by checking matrix X , we can find out which
location the service has been deployed. Then we check
matrix L, to find out its corresponding latency to each
user center Uk. If there is more than one location, then the
smallest latency is selected.

f1 calculates the overall cost of deployed services, where
Cij is the cost of deployed service Wi at candidate location

4

Aj , xij represents whether service Wi is allocated to candi-
date location Aj . The sum of the multiplication of Cij and
xij is the total deployment cost.

We can calculate total cost using the above matrices C and
A.

f1 = C11 ∗ x11 + C12 ∗ x12 + C13 ∗ x13 + ...+ C33 ∗ x33

= 130 ∗ 0 + 80 ∗ 1 + 60 ∗ 0 + ...+ 54 ∗ 0

= 228

We can compute the response time matrix R = [rik] as
the following, with rik denotes the shortest response time
from service Wi to a user center Uk and Fik is the invocation
frequency of service Wi from user center Uk

R =





5.776 0 2.035
0.984 1.135 2.3
0 0 2.035





Finally, we can compute the overall network latency f2
using matrix F and R.

f2 = F11 ∗ r11 + F12 ∗ r12 + F13 ∗ r13 + ...+ F33 ∗ r33

= 120 ∗ 5.776 + 35 ∗ 0 + 56 ∗ 2.035 + ...+ 74 ∗ 2.035

= 1102.691

The constraint requires that each web service is deployed
in at least one location. The example matrix X above satis-
fies the constraint.

4 BMOPSOCD FOR WEB SERVICE LOCATION

ALLOCATION

In this section we present our approach of BMOPPSOCD to
solve the WSLA problem. We first define the representation
of the problem followed by fitness functions to be used
and our method of handling the constraint. We will then
present the BMOPPSOCD algorithm for WSLA followed
by different rounding methods that are considered in this
study.

4.1 Particle Representation

As we see from above that WSLA is to design a location al-
location matrix X = [xij], where i = 1, ..., s and j = 1, ..., n.
The major difference between BMOPSOCD and three previ-
ous approaches, WSPSO, NSPSO and BMOPSOCD, is the
particle representation. As mentioned in Section ??, the
solution of WSLA is a x× n matrix. As we known that PSO
can be used to generate vector-based solutions, we need to
transform the x × n matrix into a (x × n) vector y. The
element xij in X corresponds to the (n·(i−1)+j)th element
yu in Y . Also, for continuous PSO, each element of a particle
takes value from 0 to 1, i.e., 0 ≤ yu ≤ 1. For example, the
following 3× 3 matrix

X =







0.12 0.87 0.42

0.07 0.32 0.95

0.76 0.64 0.27







can transformed into a vector:
Y = [0.12, 0.87, 0.42, 0.07, 0.32, 0.95, 0.76, 0.64, 0.27].

As we know that the final output of WSLA is an alloca-
tion matrix with xij as a binary value, the particle with the
continuous representation needs to be transformed into the
binary representation, using a rounding methods. The way
of rounding is significant to the quality of the final results.
In the following sections we will discuss different rounding
methods. Note that, Vector Y is used in the update phase
of our PSO-based algorithm. During the fitness evaluation
phase, Y is first decoded into matrix X with a selected
rounding algorithm.

4.2 Fitness Function and Constraint Handling

After particles represented as vectors being transformed to
allocation matrices, two fitness functions Equation ?? and
?? are used to evaluate fitness of particles that represents
location allocation plans. Based on the fitness of solutions a
set of non-dominant solutions are returned.

As we see in Section ??, WSLA needs to satisfy the
constraint defined as Equation. ??, which means each service
needs to be allocated to at least one location. However,
during the searching process of PSO, the constraint can
be violated. That is, infeasible particles may be generated
during the process of searching.

The constraint handling method used by BMOPSOCD
is a ranking of violations. A solution I is considered to
constraint-dominate a solution J if any of the following
conditions is true:

1) Solution I is feasible, solution J is not,
2) Both solutions are infeasible, solution I has less

violations,
3) Both solutions are feasible, solution I dominates

solution J .

The particle with less violations is always considered
as a better solution. If there is only one constraint, this
constraint handling method provides similar effect with the
death penalty method.

4.3 The BMOPSOCD algorithm for Web Service Loca-
tion Allocation

Algorithm ?? presents our BMOPSOCD algorithm for solv-
ing the WSLA problem. As seen in the algorithm, the
selection of pbest and gbest is one of the key steps in
BMOPSOCD. pbest is the personal best solution of each
particle in population. The pbest is updated only if the new
particle dominates the current one, otherwise it remains un-
changed. In the BMOPSOCD, any non-dominated solutions
in the archive can be a gbest. Therefore, it is important to
ensure that the particles move to an unexplored area. The
gbest is selected from non-dominated solutions with highest
crowding distance value. It ensures the swarm to move to a
least crowded area.

The fitness of particles can be evaluated using the fitness
functions presented in Equation ?? and ??. Line 12 updates
velocity vi as:

vid = w∗vid+c1 ∗r1i ∗ (pid−xid)+c2 ∗r2i ∗ (ppg−xid) (9)

5

Algorithm 1 BMOPSOCD for WSLA

Inputs:
Cost Matrix C,
Server network latency matrix L,
Service invocation frequency matrix F
Outputs: Pareto Front: the Archive set

1: Initialize a population P with random real values ∈ (0, 1)
2: Initialize vi = 0
3: For each individual i in P Rounding and Evaluating fitness
4: Initialize pbest of each individual i.
5: Initialize gbest
6: Initialize Archive with non-dominated vectors in P
7: repeat
8: Compute the crowding distances of each solution i in Archive
9: Sort solutions in Archive in descending crowding distances

10: for (do each particle)
11: Randomly select the global best guide for P [i] from a spec-

ified top portion of the sorted archive A and store its position to
gbest.

12: Compute the new velocity vi
13: Update its position xi

14: If it goes beyond the boundaries, then multiply its velocity
by -1

15: If (t < (MAXT ∗ PMUT)), apply Mutation
16: Rounding and Evaluating fitness
17: Update its pbest
18: end for
19: Insert new non-dominated solution into Archive, remove dom-

inated solutions from Archive
20: until maximum iterations is reached
21: return Archive

w is the inertia weight, c1 and c2 are the acceleration
factors, r1i and r2i are the randomm variables sampled
from uniform distribution between 0 and 1, vid, xid, pid
and gd denote the value in dimension d of vi, xi, pi and g,
respectively. For WSLA, the decision variable is binary, 0 or
1. Therefore, in our algorithm (Line 3 and 16) we apply a
rounding function to transform continuous values to binary
values. In the next section we discuss different rounding
methods and studies their performance.

4.4 Rounding Functions

The original MOPSOCD is designed as a continuous version
PSO. Instead of changing the particle to a binary represen-
tation, we still use the continuous representation. In order
to be compatible with the binary problem, the continuous
representation particle needs to be transformed to a binary
representation during the process of fitness evaluation. That
is, in the initial stage, particles are initialized in real values.
The updates of velocity and position are performed as usual.
To evaluation the fitness of particles, particles in continuous
representation need to transformed to the particles in binary
representation, which can then be evaluate fitness functions.

The rounding function is used to map a real value
particle to a discrete value particle. The common strategy
is to round a real value to its closest integer number. The
round-down strategy is adopted in [?] to solve integer
programming problem. [?] uses a real value representation
of chromosome for GA. Then, a eal value chromosome is
rounded to an integer and binary representations in order
to achieve a mixed integer optimization of array antenna
pattern and micro-strip antenna. [?] adopts rounding and
interval mapping strategy to solve 0-1 discrete, integer
optimization and mixed optimization problem. [?] uses a

random-round function which randomly returns round-up
value or round-down value.

4.4.1 A Static Rounding Function
A static rounding function is a straightforward strategy. A
parameter threshold t is introduced in the static rounding
function. The value of a particle entry is either round up or
round down according to t. The threshold value t is rather
ad-hoc that based on empirical study.

xij =

{

1 if x′

ij > t

0 otherwise
(10)

4.4.2 Dynamic Rounding Functions
The threshold plays an important role in searching for solu-
tions for a given problem. The static rounding function has
the following drawbacks. Firstly, the parameter threshold t

needs to be predefined. The value of threshold t is problem
specific, therefore, it is hard to estimate the performance be-
fore obtaining the results. Secondly, the influence of different
threshold values are not completely studied. Because of the
above reasons, a dynamic rounding threshold is proposed.
A dynamic rounding function has two steps. In the first step,
it adjusts the value of threshold t according to the current
generation. In the second step, same as static rounding
function, it either rounds up or rounds down the value of
xij according to t. Three dynamic rounding functions are
considered. Equation ?? is a linear function. Equation ?? is a
quadratic function. Equation ?? is a reciprocal function.

t =
l − u

max gen
g + u (11)

t =
l − u

(max gen)2
g2 + u (12)

t = u−
u− l

max gen − g
(g 6= max gen) (13)

The reason that we design three dynamic functions is
that we would like to compare the impact of different
trajectories of dynamic thresholds. t is the value of thresh-
old, g is the current generation. The lower boundary of a
threshold is l, upper boundary is u. They are predefined.
The performance of these rounding functions is studied in
the Section ??.

Fig. 1: Curve of three dynamic thresholds

6

4.5 An Adaptive Threshold Approach

Human have the ability to learn a technique or knowledge
and apply in different fields. As the dimensionality of the
problem increases, the performance of evolutionary compu-
tation drops. It is necessary to build a system that has the
ability to reuse the learned knowledge. Transfer learning is
a process to reuse the knowledge in solving unseen tasks
[?]. In this section, we propose an adaptive threshold that
embodied in the transfer learning process.

Figure ?? shows the evolutionary process with an adap-
tive threshold. Initially, the threshold t is set to a upper
boundary u (e.g. 0.7). Then the PSO runs with this setting
for a predefined interval i (e.g. 10 generations). In the
beginning of next interval (e.g. 11 generation), the threshold
t is changed according to a Equation ?? and remain steadily
until next interval. This process is repeated until the lower
boundary l is reached. The optimization may look like
forcing the swarm “jump” to a different area. But the process
is equivalent to initializing a new set of population with
the old one. Therefore,s the knowledge are inherited. An
underlying assumption is that, if the particle swarm could
converge within an interval i, then it is better to explore a
different direction. Therefore, in the next interval, the swarm
will explore a different area and is directed by an adjacent
threshold value. The potential problem of the method is
that it is hard to know whether the PSO is converged. The
transfer learning rounding function is shown in Equation ??
where t′ denotes the current threshold value.

Fig. 2: Evolutionary process with an adaptive threshold

t =

{

= t′ − u−l
(max gen

i
−1)

if (cur gen mod i) = 0

= t′ otherwise
(14)

5 EXPERIMENT DESIGN

The aim of this study is to propose a multi-objective WSLA
approach which can produce a well-distributed solutions
with good scalability. In the above section we present our
proposed BMOPSOCD approach to the problem of WSLA.
For this approach, static and dynamic rounding methods
with different threshold settings are considered. In this
section, a set of experiments have been conducted over three
major features of the proposed algorithm. The first feature
considers the static threshold. The influence of the selection
of different values of static threshold are studied in the first
experiment. The second feature is the dynamic rounding
functions used in the algorithm. Three different types of
rounding function are examined in the second experiment.
The third feature is the adaptive threshold. Its performance

is studied in the third experiment. An experiment of a
combination of static rounding function is conducted and
discussed. Lastly, we conduct an experiment considering
the overall performance of a BMOPSOCD with a dynamic
rounding function in comparison with three other algo-
rithms: PSO, NSPSO and NSGA-II (please see [?] for details).

5.1 Datasets

This project is based on both real world datasets [?], [?]
and stimulated datasets [?]. The dataset includes a network
latency matrix between 339 user centers and 5825 candidate
locations. In this project, there are mainly three attributes
that needs to be provided, network latencies between can-
didate locations and user centers, server rental cost in
candidate locations and web service invocation frequencies
information. As mentioned in Section ??, two other matrices,
deployment cost matrix C and invocation frequency matrix
F , are needed as input information. In principle, develop-
ment cost can be either fixed fees (monthly rent) or variable
fees (e.g. depending on storage and other resource usage).
For the sake of simplicity we consider fixed deployment
fee. For each service, the deployment cost was randomly
generated from a normal distribution with the mean of 100
and standard deviation of 20. For each user centre and each
service, the invocation frequency was randomly generated
from a uniform distribution between 1 and 120. To test
scalability of our proposed approach we design a set of
problems with different complexities.

Table ?? shows fourteen problems, listed with increasing
size and difficulty, which are used as representative samples
of the WSLA problem.

TABLE 1: Problem set

Datasets
No. of
Services

No. of
Candidate Locations

No. of
user centers

Problem 1 20 5 10
Problem 2 20 10 10
Problem 3 50 15 20
Problem 4 50 15 40
Problem 5 50 25 20
Problem 6 50 25 40
Problem 7 100 15 20
Problem 8 100 15 40
Problem 9 100 25 20
Problem 10 100 25 40
Problem 11 200 25 40
Problem 12 200 25 80
Problem 13 200 40 40
Problem 14 200 40 80

5.2 Performance Metrics

We use hypervolume and IGD as the evaluation metrics.
The IGD [?] is a modified version of generational distance
[?], [?] as a way of estimating how far the elements in
the true Pareto front are from those in the Pareto front
produced by our algorithm. It calculates the sum of the
distances from each point of the true Pareto front to the
nearest point of the non-dominated set that produced by an
algorithm. The lower the IGD, the better quality the solution
is. A true Pareto front is needed when calculating the IGD
value. For our problem, the true Pareto front is unknown.
Therefore, a approximated true Pareto front is produced

7

by combining all the solutions produced by 4 algorithms
(BMOPSOCD, NSGA-II, NSPSO, BPSO) and then applying
a non-dominated sorting over it. The approximated true
Pareto front dominates all the other solutions.

5.3 Experiments on Rounding Functions

This section designs four experiments to study the effect of
different types of rounding functions. Four datasets (Prob-
lems 2 ∼ 5) are used, chosen from Table ??.

5.3.1 Static Rounding Function

There are two questions that we would like to answer with
this experiment. The first question is what the influence of
the threshold is. The second question is how to select a
proper static threshold.

In order to answer these two questions, a set of exper-
iments is conducted using different static threshold values
to evaluate the performance of the proposed algorithm. The
threshold value is ranged from 0.3 to 0.7. The parameters of
the algorithm are set as follow, w = 0.4, mutation probability
Pm = 0.5, c1 = 1, c2 = 1, archive size is 250, population size
is 50 and the max number of iteration is 50. For each exper-
iment, the proposed algorithm has been independently run
40 times. The best results of all the runs are compared. To
obtain the best result of 40 runs, the results of all 40 runs are
combined and sorted by a fast non-dominated sorting.

5.3.2 Dynamic Rounding Function
In Section ??, three dynamic rounding functions are pro-
posed. In this section we evaluate the performances of
different rounding functions to find out which dynamic
rounding function provides the best results. The parameters
of the PSO algorithms are set as follows: w = 0.4, mutation
probability Pm = 0.5, c1 = 1, c2 = 1, archive size is 250,
population size is 50 and the max number of iteration is 50.
The upper boundary of dynamic threshold u = 0.7 and the
lower boundary of dynamic threshold l = 0.3. The results
are compared using average solutions.

Figure ?? shows threshold t changes along with the
generations. It is easy to notice that the points on linear
and quadratic functions are uniformly distributed. Points
on reciprocal are unevenly distributed.

5.3.3 An Adaptive Threshold Approach
The performance of the adaptive threshold approach is
studied in this experiment. The parameters of the PSO algo-
rithms are set as follows: w = 0.4, mutation probability Pm

= 0.5, c1 = 1, c2 = 1, archive size is 250, population size is 50
and the max number of iteration is 50. The upper boundary
of dynamic threshold u = 0.7 and the lower boundary of
dynamic threshold l = 0.3. The interval is set to 10. The
results are compared with dynamic functions with average
solution approach.

5.3.4 Dynamic Rounding Functions

Table ?? shows the average performance of three dynamic
functions that evaluated by hypervolume. The results indi-
cate the reciprocal function dominated the three dynamic
functions in all test cases. This effect could be visually
observed by plotting the best results (Figure ??). Figure ??

shows the reciprocal function slightly dominate the other
two dynamic functions. However, the problem of the recip-
rocal function is that the solutions are not complete. There
are gaps in Problems 3 ∼ 5. The gap is created because of
the uniformity of the reciprocal function (Figure ??).

(a) (b)

(c) (d)

Fig. 3: Dynamic Rounding Function Experiments : The
non-dominated solutions among the sets obtained by 40
independent runs of BMOPSOCD with different dynamic
functions

TABLE 2: The mean and standard deviation of the hyper-
volume values over the 40 independent runs

Linear Quadratic Reciprocal
problem 2 0.72 ± 0.011 0.73 ± 0.008 0.74 ± 0.013
problem 3 0.80 ± 0.012 0.81 ± 0.012 0.815 ± 0.013
problem 4 0.82 ± 0.012 0.86 ± 0.016 0.87 ± 0.014
problem 5 0.80 ± 0.014 0.85 ± 0.023 0.86 ± 0.020

According to Table ??, the experimental results show that
in terms of convergence, the reciprocal function produces
the best result. However, it also shows the major disad-
vantage of the reciprocal function, which can not produce
an entire Pareto front. In contrast, the quadratic function
performs a little worse in convergence but obtains an uni-
formly distributed non-dominated set. The linear function
is dominated by quadratic function in both aspects.

The better convergence with the reciprocal function can
be explained, as there is minor change in threshold in the
most generations, the swarm has longer time to search along
the same direction. On the other hand, with the linear and
quadratic function, the constant changing in direction could
leads to premature convergence.

In comparison between the quadratic function and the
linear function, the only difference is that changing in the
quadratic function is smoother than linear. The searching

8

TABLE 3: A comparison between Reciprocal function and
Adaptive function, the mean and standard deviation of
hypervolume values over the 40 independent runs

Reciprocal Adaptive
problem 2
problem 3
problem 4
problem 5

0.74 ± 0.013
0.815 ± 0.013
0.87 ± 0.014
0.86 ± 0.020

0.72 ± 0.011
0.83 ± 0.014
0.85 ± 0.014
0.85 ± 0.022

process is in a continuous space, therefore, sudden changes
are considered to be harmful.

With these experiment results, it is still not easy to
answer Which dynamic rounding function produces the best
results. In the perspective of algorithm design, convergence
and diversity are both important. The little advantage of
convergence in the reciprocal function might be considered
as trivial, but the gap in the non-dominated set could not
be neglected. Therefore, the quadratic function is a better
choice. On the other hand, from the perspective of WSLA,
the gap might be trivial since it can be complemented by the
nearby solutions. However, better convergence means high
quality allocation plan which is the major goal of WSLA.

5.3.5 An Adaptive Threshold Approach
We compared the performance of the adaptive threshold
approach with reciprocal rounding function. Table ?? clearly
shows reciprocal function dominates the adaptive threshold
approach in the most cases. However, Figure ?? shows the
adaptive threshold approach dominates in Problem 3 and
has better diversity in Problem 4. The results show another
desired feature of the adaptive threshold approach. It could
provide an uniformly distributed non-dominated set. Over-
all, the performance of the adaptive threshold approach is
very close to reciprocal function.

5.3.6 A Combination of Static Function
In this experiment, we combined all solutions from 5 static
rounding functions mentioned in Section ?? and applied
a fast non-dominated sorting over it. The performance is
compared with reciprocal rounding function in Figure ??.
As the figure shows, the combined non-dominated set dom-
inates all problems. The solution is not only diverse but
also uniformly distributed. However, the major problem is
that this method takes five times longer execution time than
using reciprocal function.

5.4 BMOPSOCD versus NSPSO, NSGA-II and BPSO

To evaluate the performance of our proposed BMOPSOCD
we conduct experiments to compare its performance with
three previous approaches, NSPSO, BPSO and NSGA-II.
The results are shown in Table ??. In this table, “Ave-
”, “Std-” illustrate the average and standard deviation of
four approaches over the 40 independent runs. It can be
seen from Table ??, on all datasets except one, BMOPSOCD
dominates other algorithms in both hypervolume and IGD.
The only exception is Problem 1, where BPSO has the
best hypervolume value. On all datasets, only BMOPSOCD
remains a good performance on hypervolume while the
performance of the other three approaches is obviously
decreasing with the number of variable increasing. On all

(a) (b)

(c) (d)

Fig. 4: Adaptive Rounding Function Experiments: The non-
dominated solutions among the sets obtained by 40 inde-
pendent runs of adaptive function and reciprocal function

(a) (b)

(c) (d)

Fig. 5: Combination of Static Function Experiments: The
non-dominated solutions among the sets obtained by 40
independent runs of combination of static thresholds and
reciprocal function

datasets, BMOPSOCD achieved a considerably better per-
formance than other three algorithms do in IGD which

9

indicates a high coverage.
In comparison with NSPSO and NSGA-II, BMOPSOCD

with dynamic rounding function achieved significantly bet-
ter convergence and diversity. The first reason is that with
the dynamic rounding function, BMOPSOCD could move
out of local optima. In contrast, NSGA-II and NSPSO are
easy to stuck at local optima. The second reason is BMOP-
SOCD keeps an external archive. Although the three algo-
rithms maintain the same size of population, they produce
different sizes of solutions. BMOPSOCD outputs an archive
with a size of 250 while other two algorithms output a
population of size 50.

In Problem 1, the convergence of BMOPSOCD is worse
than BPSO. One reason is probably that BPSO runs 50
generations with the same weight for both objectives, it has
more time to search a direction. On the other hand, with
dynamic rounding function, MOSPCOD might not com-
pletely converge. Another reason is related to the variable
size, where BPSO has better performance in small datasets,
when the number of datasets increases, the performance
drops rapidly. In contrast, BMOPSOCD with the dynamic
rounding function is not affected by the variable sizes.

In terms of execution time, although BMOPSOCD is not
as good as NSGA-II, it achieves the best or the second best
performance for 11 out of 14 problems (Table ??).

In summary, from the experimental evaluation that com-
paring the proposed algorithm with previous approaches,
we observe that on most datasets, BMOPSOCD can achieve
much better results in both convergence and diversity than
other three methods, NSPSO, NSGA-II and BPSO. Addition-
ally, the performance of MOPSOCD with dynamic rounding
function is not affected by the size of variable. This is a
significant advantage of BMOPSOCD over the other three
approaches.

6 CONCLUSION AND FUTURE WORK

This paper proposed a BMOPSOCD to solve the WSLA
problem with the aim of producing a set of high quality
solutions with good diversity that covers most of the Pareto
front when dealing with large datasets. For that, we pro-
posed a binary version of multi-objective PSO with crowd-
ing distance to solve the WSLA problem. We introduce a
rounding function mechanism which not only makes a con-
tinuous algorithm compatible with binary problems but also
significantly improved the quality of solutions. Specifically,
three types of rounding functions and an adaptive round-
ing function were developed. From the experiments, we
observed that the solutions from BMOPSOCD with dynamic
rounding functions have a great diversity that almost covers
the whole Pareto front. Meanwhile, BMOPSOCD could pro-
duce good solutions regardless of increasing problem size.

There are a few directions that future work can work on.
Firstly, our model can be further improved by considering
service composition. For now, the problem model considers
each service as an atomic service. With the increasing usages
of composite services that composed with atomic services
distributed over the internet, we need to consider service
composition workflow while doing WSLA. Service compo-
sition workflow has a significant impact on the allocation of
atomic service because the data flow between services could

not be neglected. Therefore, the location of each atomic
service is highly related to the previous and the next service
in a workflow.

Secondly, more potential objectives need to be consid-
ered, for example, the availability problem. In order to
avoid single point failure, WSPs normally deploy multiple
services in different candidate locations to keep the avail-
ability. Green economy could also being considered. As the
issue of global warming becomes a world-wide challenge,
deploying a service to a location that close to a power plant
has been proposed in the literature [?]. In addition, future
work can consider multiple constraints such as the overall
cost constraints and bandwidth constraints.

10

TABLE 4: Comparison between BMOPSOCD, NSPSO, NSGA-II and BPSO: The non-dominated solutions among the sets
obtained by 40 independent runs of different algorithms

Dataset Method Hypervolume (avg ± sd) IGD (avg ± sd)

problem 1

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.83 ± 0.04
0.76 ± 0.018
0.83 ± 0.013
0.89 ± 0.015

3.73E-02 ± 1.03E-02
0.16 ± 3.45E-02
0.19 ± 3.21E-02
0.46 ± 2.45E-02

problem 2

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.73 ± 0.011
0.61 ± 0.001
0.60 ± 0.011
0.61 ± 0.001

3.15E-02 ± 7.92E-03
0.15 ± 1.46E-02
0.19 ± 1.81E-02
0.42 ± 1.54E-02

problem 3

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.81 ± 0.012
0.61 ± 0.011
0.59 ± 0.008
0.69 ± 0.007

7.03E-03 ± 1.92E-03
0.10 ± 6.35E-03
0.16 ± 7.25E-03
0.30 ± 8.94E-03

problem 4

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.83 ± 0.016
0.63 ± 0.012
0.61 ± 0.008
0.71 ± 0.008

5.80E-03 ± 1.37E-03
0.11 ± 8.55E-03
0.17 ± 9.11E-03
0.30 ± 8.62E-03

problem 5

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.84 ± 0.014
0.61 ± 0.009
0.58 ± 0.005
0.67 ± 0.007

3.74E-03 ± 1.02E-03
0.11 ± 7.93E-03
0.17 ± 6.89E-03
0.24 ± 5.02E-03

problem 6

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.81 ± 0.014
0.59 ± 0.007
0.55 ± 0.006
0.63 ± 0.005

5.81E-03 ± 1.95E-03
0.11 ± 5.06E-03
0.18 ± 8.01E-03
0.28 ± 5.88E-03

problem 7

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.79 ± 0.015
0.60 ± 0.008
0.56 ± 0.005
0.63 ± 0.006

7.13E-03 ± 1.70E-03
0.10 ± 4.58E-03
0.17 ± 6.48E-03
0.27 ± 7.92E-03

problem 8

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.81 ± 0.015
0.61 ± 0.008
0.58 ± 0.005
0.65 ± 0.007

8.77E-03 ± 1.90E-03
0.12 ± 5.81E-03
0.19 ± 6.17E-03
0.27 ± 5.86E-03

problem 9

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.83 ± 0.016
0.60 ± 0.009
0.56 ± 0.004
0.62 ± 0.005

3.58E-03 ± 1.53E-03
0.11 ± 5.33E-03
0.17 ± 3.56E-03
0.22 ± 3.22E-03

problem 10

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.80 ± 0.012
0.58 ± 0.008
0.53 ± 0.005
0.58 ± 0.005

4.30E-03 ± 1.75E-03
0.11 ± 4.97E-03
0.19 ± 5.62E-03
0.25 ± 3.91E-03

problem 11

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.79 ± 0.012
0.57 ± 0.009
0.52 ± 0.003
0.55 ± 0.003

5.19E-03 ± 1.81E-03
0.12 ± 4.22E-03
0.20 ± 2.74E-03
0.24 ± 3.36E-03

problem 12

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.80 ± 0.01
0.58 ± 0.009
0.52 ± 0.003
0.56 ± 0.003

3.12E-03 ± 6.71E-04
0.12 ± 4.15E-03
0.20 ± 3.08E-03
0.24 ± 2.50E-03

problem 13

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.83 ± 0.012
0.59 ± 0.008
0.53 ± 0.003
0.56 ± 0.004

2.63E-03 ± 6.73E-04
0.12 ± 3.46E-03
0.20 ± 3.04E-03
0.22 ± 2.01E-03

problem 14

BMOPSOCD
NSPSO
NSGA-II
BPSO

0.84 ± 0.015
0.59 ± 0.009
0.53 ± 0.002
0.57 ± 0.003

3.66E-03 ± 1.75E-03
0.13 ± 3.85E-03
0.22 ± 3.24E-03
0.25 ± 1.83E-03

11

TABLE 5: Execution time

method time (avg ± sd)

problem 1

BPSO
BMOPSOCD

NSPSO
NSGA-II

17.99 ± 0.26
12.98 ± 0.18
19.00 ± 0.17
15.35 ± 0.15

problem 2

BPSO
BMOPSOCD

NSPSO
NSGA-II

23.55 ± 0.27
16.18 ± 0.26
25.52 ± 0.27
15.38 ± 0.31

problem 3

BPSO
BMOPSOCD

NSPSO
NSGA-II

103.65 ± 1.87
94.98 ± 7.28

111.86 ± 1.11
74.34 ± 0.61

problem 4

BPSO
BMOPSOCD

NSPSO
NSGA-II

181.20 ± 4.40
175.99 ± 9.67
182.09 ± 1.86
147.98 ± 1.30

problem 5

BPSO
MOPSOCD

NSPSO
NSGA-II

137.03 ± 0.87
89.74 ± 8.53

161.31 ± 0.95
84.17 ± 1.03

problem 6

BPSO
BMOPSOCD

NSPSO
NSGA-II

208.63 ± 2.23
172.80 ± 7.68
236.23 ± 2.72
157.52± 1.62

problem 7

BPSO
BMOPSOCD

NSPSO
NSGA-II

234.73 ± 6.42
202.68 ± 10.46
242.94 ± 9.00
159.26 ± 1.31

method time (avg ± sd)

problem 8

BPSO
BMOPSOCD

NSPSO
NSGA-II

476.76 ± 22.40
531.64 ± 43.14
444.41 ± 22.86
375.05 ± 4.11

problem 9

BPSO
BMOPSOCD

NSPSO
NSGA-II

293.43 ± 3.01
198.81 ± 7.11
334.62 ± 2.81
181.30 ± 1.99

problem 10

BPSO
BMOPSOCD

NSPSO
NSGA-II

507.72 ± 4.19
449.91 ± 26.00
539.51 ± 4.06
381.18 ± 3.06

problem 11

BPSO
BMOPSOCD

NSPSO
NSGA-II

1,237.30 ± 42.06
1,262.79 ± 91.65
1,328.17 ± 12.67
1,036.53 ± 35.38

problem 12

BPSO
BMOPSOCD

NSPSO
NSGA-II

3,631.14 ± 17.70
4,326.22 ± 478.14
3,395.47 ± 100.51
3,326.94 ± 38.21

problem 13

BPSO
BMOPSOCD

NSPSO
NSGA-II

1,416.63 ± 0.26
1,155.21 ± 28.85
1,507.92 ± 25.74
1,098.08 ± 17.36

problem 14

BPSO
BMOPSOCD

NSPSO
NSGA-II

3,617.53 ± 34.13
3,284.66 ± 124.13
3,759.51± 61.49
3,372.53 ± 31.05

12

Fig. 6: MOPSOCD, NSPSO and BPSO Experiments: The non-dominated solutions among the sets obtained by 40
independent runs of different algorithms

(a) Problem 1 (b) Problem 2 (c) Problem 3

(d) Problem 4 (e) Problem 5 (f) Problem 6

(g) Problem 7 (h) Problem 8 (i) Problem 9

(j) Problem 10 (k) Problem 11 (l) Problem 12

(m) Problem 13 (n) Problem 14

