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Abstract

Most specification languages labour under a monolithic,
closed-world assumption: that all the modules comprising
a program, and all their interactions, can be known ahead-
of-time. Specifications are tied tightly to the code of the
modules that implement them. Many contemporary systems,
however, must live in an open world: where there is no cen-
tral trusted authority that can validate components. Open
world systems comprise modules developed by many dif-
ferent parties, linked together dynamically in unforeseen
constellations, and have to function correctly under attacks
external modules which may be malicious.

In this paper we propose Chainmail, a modular, defen-
sive, specification language for the open world. Chainmail
specifications are modular, as separate concerns in a system
can be captured as individual specifications or policy defini-
tions which can cross-cut multiple modules. Chainmail poli-
cies define not only method pre- and post- conditions, but
also give invariants that must be maintained irrespective of
any other code in the system, even when the actual compo-
sition of the system is unknown. Taken together, this means
that Chainmail can specify modules that must be defensively
consistent, guaranteeing their integrity in an arbitrary open
world. We present four small case studies of Chainmail spec-
ifications, and give a formal definition of Chainmail’s seman-
tics.

Categories and Subject Descriptors D.2.1 [Requirements
/ Specifications]: Languages; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.4.6 [Security
and Protection]: Verification

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction

Contemporary open systems are made up of modules devel-
oped by many different parties, linked together dynamically
in unforeseen constellations. Modules have to function cor-
rectly, even when they collaborate with external modules of
unknown provenance. In practice this means modules must
work defensively to protect their own modules’ integrity
when they interact with potentially malicious external code.

Not only is the development of open code error prone,
but it is also difficult to specify correctly [10, [11]]; verify-
ing that a particular module maintains the resulting speci-
fications in an open environment is even more difficult, be-
cause the specifications need to describe the behaviour of the
code both for those few secure systems when all objects are
trustworthy, but for the many insecure systems when one or
more unknown external objects may be malicious. To mis-
paraphrase Tolstoy, secure systems are all alike; every inse-
cure system is insecure in its own way [33]]. Attackers “only
have to be lucky once” while secure systems “have to be
lucky always” [2].

The traditional (philosophically, the “modern’ approach)
to construct secure systems is to build up trusted components
as an hierarchy on top of a known and trusted secured com-
puting base, underpinned by verified and verifying compil-
ers [21]. This approach relies on a closed world assumption:
there is an explicitly demarcated border between the inside
and the outside of the system, and the whole system can be
trusted because (and as long as) each component inside the
border can be trusted. Similarly, each module is an indepen-
dent demesnes [54]], jealously protecting its own invariants
behind its own borders, giving rise to a series of layers of
trust, layered virtual machines [8]] or protection rings [48]].

Open systems, on the other hand, must live under an
open world assumption: they are composed of a wide range
of component objects with different levels of mutual trust
(or distrust). Rather than all components within an explicit
boundary being trusted equally, an open system is a post-
modern heterarchy, a rhizome, a dynamic arrangement of
objects each of which may trust different combinations of
objects in different ways [42]. Rather than strict boundaries
between the outside of the system and the various layers
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inside, an open system is demarcated implicitly, as objects
dynamically come into relationships with other objects, as
those objects mutually interact, and as those relationships
eventually dissolve. Trust relationships may be established
gradually, as dynamic interactions between components let
individual components determine which other components
they are willing to trust (and which they are not). In an open
world, it is crucial that code fails safely: each module must
take care that it can protect its own invariants, especially
when a interacting with untrusted modules.

The critical problem with building systems for an open
world is that the actual invariants that must be maintained
by a program will be implicit, scattered throughout the pro-
gram’s modules. Any part of a program that uses an object
from a trusted module may (by oversight, error, or fraud)
hand that object to an untrustworthy module, giving poten-
tially malicious code access to all the services provided by
the trustworthy module [4, 22]. This makes it hard to de-
termine what invariants are actually maintained by a given
module, and thus verify the integrity of the overall system.
Miller [35)136] defines the necessary approach as defensive
consistency: “An object is defensively consistent when it can
defend its own invariants and provide correct service to its
well behaved clients, despite arbitrary or malicious misbe-
haviour by its other clients.” Defensively consistent modules
are particularly hard to design, to write, to understand, and
to verify: but they have the great advantage that they make it
much easier to make guarantees about systems composed of
multiple components [41].

In this paper, we present a modular specification lan-
guage, Chainmail, that is designed to support defensively
consistent specifications of these kinds of open systems.
Building on the object-capability model [37], Chainmail
specifications are modular, as separate concerns in a sys-
tem can be captured in as individual specification or policy
definitions. Chainmail specifications not tied to any partic-
ular module in a system but can define the behaviour of
any complying module, and can cross-cut multiple modules.
Chainmail policies define not only method pre- and post-
conditions, but also give invariants that must be maintained
irrespective of any other code in the system, even when
the actual composition of the system is unknown. Taken to-
gether, this means that Chainmail can specify modules that
must be defensively consistent, guaranteeing their integrity
in an arbitrary open world.

Contribution This paper extends earlier informal work
mostly presented at workshops [[10} [11} 13} 43]]. Here we
present the full design of Chainmail for the first time, and
show how Chainmail allows us to write modular, multi-
dimensional specifications for the open world. As is tradi-
tional, some details are relegated to a technical report [14].
To address the open nature of the systems, we make the
meaning of policies parametric with any code that may be
linked to the current system. We give examples to show

how Chainmail modules can be written in a very robust,
defensively consistent manner, so that no further, malicious
code can steal their secrets or break their integrity.

Our design of Chainmail is part of a larger research
project about specifying and verifying systems in an open
world. Security is of particular concern in open systems, and
Chainmail includes assertions such as (obeys, MayAffect,
and MayAccess) to allow us to reason explicitly about
module’s security properties and guarantees. Elsewhere we
demonstrate how these constructs let us describe how com-
ponents can codperate to establish trust gradually, and to de-
lineate the risks involved in that codperation [[LS]]. Security,
trust, and risk are not the focus of this paper, rather here we
concentrate on the core features of Chainmail, showing how
Chainmail policies permit modular, defensively consistent
specifications.

To give a semantics to Chainmail policies we have also
defined a core object-oriented programming language, Focal,
(the Featherweight Object Capability Language, not to be
confused with FOCAL [33]]), described in more detail else-
where [14]. Focal is a simple, dynamically typed language
with traditional classes as its modularly mechanism. That is,
Chainmail provides separation of concerns for specifications
of object-oriented implementations. We made this design
choice for several reasons, primarily because we are inter-
ested in specifications, rather than implementations. We are
primarily interested in specifying “real world” programs,
which tend to be written in OO languages like JavaScript,
Java or E, rather than e.g. aspect- or subject- oriented lan-
guages; and that we wanted to keep Focal as simple as
possible. We hope to extend our specification techniques to
more modular languages in future work.

To prove a program’s adherence to Chainmail specifica-
tions, we have developed a Hoare logic and associated infer-
ence rules. We do not discuss the logic or these rules in this
paper, although they are present in the technical report [14].

Disclaimers Throughout this paper, we make the simplify-
ing assumptions that no two different arguments to methods
are aliases, that the program is executed sequentially, that we
can quantify over the entire heap, that objects do not breach
their own encapsulation or throw exceptions, that machines
on open networks are not mutually suspicious, and that any
underlying network is error-free. This allows us to keep the
specifications short, and to concentrate on the questions of
risk and trust. Aliasing, concurrency, quantification, confine-
ment, network errors, and exceptions can be dealt with using
known techniques, but doing so would not shed any further
light on the questions addressed here.

Paper Organization The next section informally intro-
duces the Chainmail specification language, and then sec-
tion 3| presents four small case studies of Chainmail specifi-
cations showing how they support defensively consistency.
Section [] then presents a formal definition of the core of
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Chainmail, section [3] discusses related work, and section [6]
concludes.

2. Chainmail

In this section we introduce our specification language
Chainmail, and describe how it can be used to write specifi-
cations for defensively consistent modules. We define Chain-
mail formally below in section 4]

Chainmail specifications are modular because we spec-
ify a system as a series of Chainmail specification mod-
ules, rather than using a single monolithic specification for
an entire system. Each Chainmail specification module con-
sists of number of named policy clauses. By convention,
Chainmail specifications are named in camelcase while poli-
cies are named beginning with po1 have words separated by
Pascal_Style_Underscores

Chainmail specifications and policies overlap and are in-
terlinked to provide strong protection against attacks — just
like the links in physical chainmail. Each policy should aim
to capture one very specific concern in the design of a sys-
tem: policies may be pre- and post- conditions on method
calls; or one-state or two-state invariants that a module that
conforms to the specification must maintain even though any
other code may be executed, including code that may use the
module being specified.

Specifications can write o obeys Spec as an assertion that
some object o conforms to the specification Spec. We have
introduced obeys elsewhere to deal with trust; here we
will show how obeys can also support modularity by tying
specifications together as necessary. We also use obeys to
decouple specifications from any particular implementation
classes. This is important in an open world, where we cannot
constrain the provenance of implementation of objects if we
wish to maintain openness. The obeys assertion constrains
or qualifies only over the actual behaviour of an object, not
the class to which it belongs, or any interfaces or traits it is
declared to implement.

Chainmail specifications may use this to refer to the ob-
ject begin specified. Using this in a specification s implic-
itly requires that this obeys s.

Chainmail also offers assertions about the shape of the
heap and of potential effects caused by objects. The assertion
MayAffect (o, p) means that it is possible that some method
invocation on o would affect the object or property p, while
MayAccess (o, p) means that it is possible that the code in
object o could potentially gain a reference to p. In practice,
MayAccess (o, p) means that p is in the transitive closure of
the points-to relation on the heap starting from o including
both public and private references.

The obeys, MayAffect, and MayAccess predicates
were introduced in our work on Risk and Trust in object-
capability programs [[L1} [13} [15]. The contribution of this
paper is the definition of Chainmail, and its general use in
specifying defensively consistent modules. For complete-

ness, we discuss trust and risk by revisiting the Purse case
study in section[3.4]

Chainmail policies (and specifications) can cross cut both
each other and the various modules and objects in the system
being specified. The validity of a specification is the con-
junction of its policies; a module or an object must satisfy all
the specification’s policies for us to consider that the object
meets the specification. Policies and specifications are not
tied to any specific module or class: rather, any implement-
ing module that satisfies the specification’s policies obeys
the specification. Chainmail has a many-to-many relation-
ship between policies and implementations, explicit embod-
ied in the obeys assertion.

Considering the separation of concerns between specifi-
cations and code, Chainmail supports both obliviousness and
quantification. Chainmail specifications require no changes
or annotations to code being specified (which is thus oblivi-
ous to the specifications) and by applying to different imple-
mentations of methods or classes, Chainmail can quantify
over the base program and its execution. Chainmail’s quan-
tification and join point model is quite simple, however: one-
state invariant policies quantify over each visible state of the
program; two-state invariants (any_code policies) quantify
over pairs of successive visible states, while policies giving
invocation pre- and post-conditions quantify over the pre-
and post- states of any matching method invocation in any
class or module.

2.1 Specifications and Implementations

Figure[I] shows a simple implementation of a counter class
in a simple untyped object-oriented language. The tick
method increments the counter, and the count method re-
trieves its value.

class counter {

var value := 0
method count {value}
method tick {value := value + 1}

LR W =

}

Figure 1. Simple Counter Example

Figure 2| shows a Chainmail validcounter specification
that could apply to the counter class. This specification
consists of one ghost field current (a ghost field may appear
only in specifications) and four policies.

The first policy, Pol_new_validCounter specifies the new

counter expression that creates the new counter instance.
First, the result res must itself conform to the validcounter

specification (res obeys validCounter). Second, we as-
sert that ghost current field for the new instance must have
the value zero. Finally, we require that no pre-existing object
may have a reference to the newly-created counter.

The second and third policies are straightforward. Pol__
count ensures that the count method returns the current
value of the counter, and Pol_tick ensures that the tick
method increments the count.
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specification ValidCounter ({
field current // Number

1
3
4 policy Pol_new_ValidCounter
5

true
6 { res = new counter }
7 (res obeys ValidCounter) A
8 (res.current == 0) A
9 -3 o : MayAccesspre (0, res)

11 policy Pol_count

12 true

13 { res = this.count }
14 res == this.current

16 policy Pol_tick

17 true
18 { this.count }
19 this.current == this.currentpre + 1

21 policy Pol_protect_count
2 V o,c:0bject. cobeysvValidCounter A
23 MayAffect (o, c.count) — MayAccess (o, c)

25 policy Pol_count_increases

26 true
27 { any_ code }
28 this.current >= this.currentpre

Figure 2. validCounter specification

The fourth policy is a one-state invariant. Pol_protect_
count guarantees that a valid counter c¢’s current count
can only be changed — MayAffect (o, c.balance) — by an
object o that may access that counter: May.Access (o, c) .

The final policy, Pol_count_increases, requires that
the counter may only increase. This is an any_code policy,
that is, a two-state assertion which must hold between any
two two states in a program’s execution, irrespective of the
module to which that code belongs.

We argue the counter class in Figure [I] satisfies the
ValidCounter specification in Figure [2] as follows. The
semantics of the underlying language (variable initiali-
sation, classes creating new unique objects) ensure the
Pol_new_ValidCounter policy is satisfied; and the straight-
forward method bodies satisfy Pol_count, Pol_tick, and
also Pol_count_increases. Finally we can argue that
Pol_protect_count is satisfied because there is no expo-
sure of this in the body of counter.

This argument relies on Meyer’s open-closed principle
[34]. Even in open systems, where modules may be added
in to a system at any time, and where the interpretation of
specifications are necessarily in an open world, we assume
that individual implementation modules — here, classes —
are closed: they have a fixed, stable, definition, and can
potentially be validated against one or more specifications.

2.2 Defensive Consistency

Pol_protect_count, in particular, will require defen-
sively consistent programming in any implementing module

to ensure that it is satisfied. Pol_protect_count cannot
be expressed as a simple invariant because it is about a rela-
tionship between two states, rather than the admissibility of a
single state. Nor can Pol_protect_count be expressed as
traditional method pre- and post-conditions, because it must
apply to all modules that implement the specification, and
pre- and post-conditions can only constrain the behaviour
of methods actually described in the specification. An im-
plementing module could have other methods that are not
mentioned in that specification.

Because Chainmail assumes an open environment, we as-
sume any other code may be linked together with the mod-
ule implementing the ValidCounter specification to make
the final system: and indeed, any module that implements
ValidCounter may also implement any number of other
specifications in addition to ValidCounter. The interpreta-
tion of Chainmail specifications is not that the resulting sys-
tem does not breach the policies, but rather, that the resulting
system cannot breach the policies.

This difference reflects critically different underlying as-
sumptions between closed and open systems. Closed sys-
tems can depend on coOperation between modules, where
all the modules in a system work together to maintain all of
their invariants, so ensuring none are breached. This is pos-
sible only when all the modules in the system are known in
advance, and known to be trustworthy in advance, that is, in
a closed system. In contrast, in an open system, it is impos-
sible to know all of the modules that may be linked together
to make any given system configuration, and impossible to
rely on the goodwill of the other modules in the system to
cooperatively maintain invariants. Rather, modules in a open
system must look out for themselves: other modules may ac-
tively try to break their invariants, steal their data, subvert
their invariants: in short, to ensure that whatever the rest of
the system tries to do, its own policies will be followed.

This is the core of defensive consistency: no matter what
the rest of the system may or may not do, a module that
implements this specification must ensure that the system as
a whole will satisfy all its policies — including any_code
invariants — even in the face of any other code executed
anywhere else in the system.

Miller’s original definition of defensive consistency (“a
defensively consistent object will never give incorrect ser-
vice to well-behaved clients” [33]), and Murray’s subse-
quent formalisation in the logic of causation [41] are both in-
tensional: specifying the essential properties of a defensively
consistent object, but do not describe how objects should be
specified or designed in order to meet that criterion. When
writing in Chainmail, we will use following practical guide-
lines to check for defensive consistency:

(A) Explicit Trust: all objects used by a specification must
be defensively consistent.

(B) Fail safely: treat success and failure explicitly.

(C) Complete specifications: cover all cases:
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(C.1) — method pre- and post-conditions.

(C.2) — invariants between method calls.

(C.3) — invariants across other objects.
We use these guidelines to analyse the case studies we
present in this paper.

3. Case studies
3.1 Modular Implementations

Figure[3|shows another implementation of the validcounter
from Figure 2] — demonstrating that specifications are not
tied to particular implementations

1| class loggingCounter {

def log = col.list

method tick { log.push(sys.currentTime) }
method count { log.size }

S SRR

Figure 3. Logging Counter Example

Once again it is relatively straightforward to demonstrate
that this class meets the specification. Again, the semantics
of classes and the behaviour of the col.1ist list collec-
tion class ensure the Pol_new_validCounter policy is satis-
fied. The count and particularly the tick methods (which
adds the time it is called to a log) are more complex than
the counter versions but validation will still be relatively
straightforward. Because nothing is removed from the log,
the size of the log cannot decrease, and this plus the defini-
tion of the count method ensures Pol _count_increases.
We can validate Pol_protect_count similarly (C).

Reading the Log

The loggingCounter in Figure [T] unfortunately doesn’t
allow any way to access the times stored in the log. To solve
this problem, we can add another method to get that log.

1 method getLog {log}

Unfortunately this implementation breaks the Pol_prot
ect_count policy of the validCounter specification. To
see why, consider the following code:

1 def ¢ = counter
2 def 1 = counter.log
3 1l.removeAll

This code will reset c.count to zero — and does so
via an object, 1 that has no access to c, thus breaching
Pol_protect_count which says that access to c is re-
quired to change it. The problem here is representation expo-
sure [[7]: the problem occurs precisely because the counter’s
representation can be accessed independently of the larger
loggedCounter implementation of which it is a part.

Defensive Consistency

Note that traditional access protection, e.g. ensuring that the
log field in the loggedCounter class is private and so

cannot be accessed that classes is not enough to avoid this
problem, because such protection does not prevent a public
method, like the getLog accessor above, from reading the
field and handing the object contained in that field to any
other object that asks (C.3). More advanced language pro-
tection mechanisms such as ownership types [3]] can prevent
this particular problem.

This is where defensive consistency is crucial: to meet
the specification programmers must ensure the integrity of
their objects cannot be undermined, no matter what external
objects that somehow come into contact with them may do.
In this case, there is a simple fix — copying the log before it
is returned:

1 method getLog {log.copy}

Returning a copy of the log prevents the result of getLog
begin used to affect the value of the count, and so a
loggingCounter extended with this version would once
again meet the ValidCounter specification.

3.2 Subject-Observer

The Observer pattern, also known as Subject-Observer, is
one of the most well-known of Gamma et al.’s Design Pat-
terns. As with many design patterns, Observer is a cross-
cutting relationship between several classes in an object-
oriented design. For these reasons, aspect-oriented or other
multidimensional modelling techniques have proved effect-
ing for modelling design patterns [[17].

Figure [] shows a version of the Observer pattern. Each
role in the pattern — subject and observer — has
their own class. As is common when modelling Observer,
for space reasons we simply arrange to update the ob-
server’s observation variable whenever the subject’s
data changes.

1| class subject {

2 def observers = col.set

3 var mydata := 0 // private by default
4 method data {mydata}

5 method change (newdata) {

6 mydata := newdata

7 for (observers) do { o —> o.notify }
8 }

9 method addObserver (o) {

10 if (this == o.subject)

1 then {observers.add(o)}

13| }

15| class observer (mySubject) {

16 method subject {mySubject}

17 var observation := subject.data

18 method notify { observation = subject.data }

9] }

Figure 4. Subject and Observer

Figure [5] shows the core of the specification for observer
pattern. Here we have two specifications that work together:
ValidSubject for the subject, and validObserver for
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specification ValidSubject ({

1
2 policy Pol_subject_observer

3 V o € this.observers.

4 o obeys ValidObserver A
5 o.subject == this

6| }
7| specification ValidObserver {

8 policy Pol_observation

9 this.observation == this.subject.data

Figure 5. Specification of validSubject and

ValidObserver

the observer. The observer’s policy specifies the key invari-
ant: that an observer’s observation must equal its subject’s
data (C.3). The subject’s policy establishes a configuration
of the system where the observer’s policy can make sense:
all the objects contained a ValidSubject’s list of observers
must obey the Validobserver specification (A), and they
must must be observing that particular subject. Note that
while the Pol_subject_observer policy explicitly re-
quires requires o obeys ValidObserver there is no explicit
requirement that subjects are valid. Rather, that requirement
is implicit in the specification, because this in a policy im-
plicitly obeys the specification containing that policy.

Defensive Consistency

Using the subject and observer is simple: we create an in-
stance of the subject, modelling a weather station, say; an
observer on the weather station; and then add the observer to
the subject:

I def weatherStation := new subject
> var weatherWebPage := new observer (
weatherStation)

3 weatherStation.addObserver (myWebPage)

At this point, whenever the weather station gets a change
in the weather:

I weatherStation.change ("Otherwise Fine")

its observers will be notified, maintaining Pol_observation.
The implementation in figure[d]is defensively consistent, be-
cause this relationship will be maintained no matter what
code in other modules may try to do to the subject or ob-
server (C.3). In particular, the observer class is carefully
designed so that its observation field cannot be modified
from outside — code attempting to change an observation
directly, e.g.:

I weatherWebPage.observation := "Rain"

must be prevented by programming language mechanisms,
typically dynamically (e.g. in JavaScript or E) but poten-
tially statically (Java’s class verifier). Similarly this design
depends on the subject’s data field only be updated by call-

I| specification FileSystem ({

2 policy Pol_getFile

3 name € String

4 { res = this.getFile (name) }
5 (res == nil) V

6 ((res obeys File)
7|}

&& res.isOpen == false)

9| specification File {
10 field isOpen // Boolean
12 policy Pol_open

13 true

14 { this.open }

15 this.isOpen == true

17 policy Pol_read_1

18 true

19 { res = this.read }

0 (res € String) —— thispre.1sOpen

2
2 policy Pol_read_2
23

true
24 { res = this.read }
25 (res == nil) — \neg thispre.isOpen

27 policy Pol_close

28 true
29 { this.close }
30 this.isOpen == false

Figure 6. Specification of FileSystemand File

ing the change method: we assume all fields are only acces-
sible via “tnis” unless explicitly annotated public (C.1).

3.3 Files

Our third case study considers a simple file interface. Fig-
ure [6] shows two related specifications: FileSystem which
supports navigation in a file system, and File that supports
reading a file.

The Filesystem specification has only one policy Pol_
getFile which defines the getFile method. This method
accepts a string argument, and either returns nil (presum-
ably if that string does not denote a file) or a closed File
object.

The File specification in Figure [6] supports opening,
reading, and closing the file. Pol_open and Pol_close
open and close the file respectively. Pol_read_1 specifies
an attempt to read an opened file: the read method returns a
String containing the file contents. Pol_read_2 specifies
the situation when an attempt is made to read a closed file:
once again nil must be returned.

Defensive Consistency

The specifications in Figure [6] quite restrictive, especially as
they specify explicitly the results that are returned when
methods fail (as in getFile and read). Pol_read_1
and Pol_read_2 both specify the same method call (on
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specification ValidPurse {
field balance // Number

1
3
4 policy Pol_deposit_1 // success case:
5 amte N

6 { res = this.deposit (amt, src) }

7 res — (

9 A O0<amt<src.balancepre A

12 Vo:preObject. V pobeys,rcvValidPurse.
14 policy Pol_deposit_2 / / failure case:
15 amt€ N

16 { res = this.deposit (amt, src) }

17 —res — (

8 srcobeys preValidPurse A CanTrade (this, src)pre

10 this.balance=this.balancepretamt A src.balance=src.balancepre—amt A
1 Vp. (pobeyspreValidPurse A pé¢ {this,src} — p.balance=p.balancepre) A
MayAccess (0, p) — MayAccesspre (0,p) )

18 —( src obeys,re ValidPurse A CanTrade (this,src)pre A OSamtSsrc.balancepre) A
19 Vp. (pobeyspreValidPurse — p.balance=p.balancepre) A
20 Vo:preObject. V pobeyspreValidPurse. MayAccess(o,p) — MayAccesspre (0,p) )

Figure 7. Specification of validPurse

read): but Pol_read_1 specifies the successful case, and
Pol_read_2 the failure case (B).

These specifications again demonstrate the necessity of
defensively consistent specifications and implementations
for open systems — specifications and implementations that
do not assume that clients will codperate with the implemen-
tations to meet the specifications. We see this as conditions
such as this.isOpen appear in policies’ postconditions,
rather than their preconditions (C.1).

Consider the following Eiffel-style Design by Contract
alternative policy for reading a file:

1 policy Pol_read Eiffel

2 this.isOpen

3 { res = this.read }
4 res € String

in Pol_read_Eiffel, the test that the file is open is han-
dled by the precondition, and the result is guaranteed to be
a string. This is fine in closed system with an underlying as-
sumption that modules will all codperate to e.g. ensure that
the invariants of the File module are not subverted. The
problem with this kind of specification in a open system is
that it does not explain what should happen when the pre-
condition is breached: the behaviour of a closed File object
that receives the read method is (intentionally) unspecified.
Paraphrasing Bertrand Meyer, closed systems can adhere to
the principle that “under no circumstances shall the body of
a routine check for the precondition of the routine”, and as a
consequence “if the class does not satisfy precondition, then
the class is not bound by the post condition. . .. [it] can either
throw an exception or return a wrong result.”. [34,152].

Our specifications illustrate why defensive consistency is
the antithesis of this principle: a defensively consistent spec-
ification (and hopefully a defensively consistent implemen-
tation of that specification) must be designed for an open

system where such a codperative assumption is untenable.
Other modules may well attempt to e.g. call getFile on se-
cure system files they should not be able to access, or call
read on files that have already been closed; our specifica-
tions must give accurate guidance to implementations about
how those situations must be handled, rather than “returning
a wrong result” which could include a read method return-
ing private information that was meant to be kept secure. Eif-
fel style specifications, designed for closed systems, explic-
itly permit these implementations which can be disastrous
for open systems: the Chainmail style, in contrast, encour-
ages full specifications of both correct and incorrect invoca-
tions.

3.4 Purses

As a final case study we revisit Miller’s Purse example which
we have described in more detail elsewhere [11}[13}[15].
Figure[7]shows two policies from the validpurse spec-
ification. A Purse is a model of a store of value, such as a
bank account. Writing dst.deposit (amt, src) will either
transfer ant from the src purse to the dst purse and re-
turn true, or do nothing and return false. Taken together, the
Pol_deposit_1and Pol_deposit_2 policies specify this
behaviour. The postconditions of the policies do all the work.
If the argument src is a valid purse (‘“’src obeys Valid-
Purse”) that can trade with the receiver, and has sufficient
balance, the transaction goes ahead and returns t rue, other-
wise the transaction does not go ahead and returns false.

Defensive Consistency

This specification ensures defensive consistency in a num-
ber of ways. Most obviously, the Pol_deposit_1 and
Pol_deposit_2 policies specify both success and failure
cases in detail: the purse does not rely on its clients “playing
nicely” (3). For this reason, rather than encoding sufficient
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conditions in the precondition, we specify necessary condi-
tions in the postcondition, and make them conditional on the
return value.

Secondly, the specification does not relies on e.g. class
membership to validate the src purse. Rather, we specify
that the src purse obeys this specification, which makes
no claim about the particular class of the src object (A).
We also use a local (abstract) predicate CanTrade between
individual purses (e.g. if they represent accounts at the same
bank). An open system could have many different “families”
of purses, different implementations of this specification,
and only purses from the same family would be able to trade
with each other. The specification does not rely on a type
system or some other central authority to know which purses
are trustworthy and which are not, rather it uses obeys to
make that relationship explicit.

Thirdly, we carefully frame the behaviour of other valid
purses to avoid unexpected or unwanted effects (C.3). For a
purse to be valid, calling deposit must not somehow affect
other purses elsewhere. If the transaction is unsuccessful, no
purses may be affected; if successful, only this and src can
change. Similarly, we require deposit cannot leak access
to any purse: if after the method call, a pre-existing o has
access to a ValidPurse object p, then o must already have
had access to a p before the call.

4. Formal Model

In this section define the core of the Chainmail specification
language. While we have discussed Chainmail elsewhere
[13} [15] in this paper we provide a formal definition for
the whole core of the specification language. Many details,
including the featherweight programming language Focal
upon which it relies, and our Hoare Logic, are presented in
our technical report [14]; to facilitate cross-references, we
adopt its numbering for definitions.

Chainmail specifications are a conjunction of a set of
named policies. Chainmail policies are based on one-state
assertions (A) and two-state assertions (B). To express the
state in which an expression is evaluated, we annotate it
with a subscript. For example, x > 1 is a one-state, and
Tpre — Tpost = 1 1S a two-state assertion. Validity of an
assertion is defined in the usual manner, e.g. in a state o with
o(z) = 4 we have M,0 = = > 1. If we also have o/(z) =
3, then we obtain M, 0,0’ |= Tpre — Tpost = 1. Chainmail
specifications may also express ghost information, which is
not stored explicitly in the state o but can be deduced from
it — e.g. the length of a null-terminated string.

4.1 Expressions and Assertions

We first define expressions, Expr, and assertions A, which
depend on one state only. We allow the use of mathematical
operators, like 4+ and —, and we use the identifier fto indicate
functions whose value depends on the state, e.g. the function
length of a list. Functions model ghost fields. Arguments

Arg are access paths within the underlying language [14].
The difference between expressions and arguments is that
expressions may express ghost information, which is not
stored explicitly in the state o but can be deduced from it
— e.g. the length of a list that is not stored with the list.

Definition 8 (Expressions).

Expr := Arg | Val | Expr+ Expr |
| AExpr)
| if Expr then Expr else Expr
funDescr := function f{ Parld* ) { Expr }

We now define the values of such expressions, and the
validity of one-state assertions as follows:

Definition 9 (Interpretations). We define the interpretation
of expressions, |- : Expr x Module x state — Value
using the notation |- p1 -

* |val|m,o = val, for all values val € Val.

aly .o = |als, forall arguments a € Aryg.
er+ealmeo=erlmoe+ lez]mo

f(el 5 en)J M,oc = I_EJTPT[GJ /p] 5 ---en/pn”Mﬂ
where M (f) = function f (p;...pn) { Ezpr},
undefined, otherwise.

lif ep then e; else ez |0

=| es] Mo If | €0] m,o=true,

:|_ ngM}g, lfl_ eoJM’g:falSC.

and undefined, otherwise.

|
il
!
L

One-state assertions We now define a language of asser-
tions which depend on one state. Most of these are conven-
tional: expressions and relations from the underlying base
language; specification level binary predicates; existential
and universal quantification, and the assertion Expr: Classld
which expresses class membership.

We also introduce three specific assertions types to assist
in reasoning about security: MayAffect and MayAccess
model risk, while FExpr obeys Specld models trust. These
assertions are hypothetical, in that they talk about the po-
tential effect of execution of code, or of the existence of
paths to connect two objects. The MayAffect assertion as-
certains whether its first parameter may execute code which
affects the second one; the May.Access assertion ascertains
whether its first parameter has any path to the second one;
and obeys captures an assumption that an object conforms
to a given specification. These three assertions are motivated
and discussed in depth elsewhere [[15]: we include their def-
initions here for completeness.

Definition 10 (One-state Assertions).
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Expr | R(Expr*)
Expr>Expr | ANA |
IxA | VxA |
Expr:Classld
MayAffect ( Expr,Expr)
MayAccess( Expr,Expr)
Expr obeys Spcld

PredDescr = predicate R( Parld* ) { A }

Two-state assertions Two-state assertions allow us to com-
pare properties of two different states, and thus say, e.g. that
c.countypee = c.county. + 1. To differentiate between
the two states we use the subscripts pre and post.

Definition 11 (Two-state Assertions).

t =
B

pre | post | €
= A

| Expr, > Expr; |
| New(Ezpr)

| BAB |

| dx.B | Vx.B.

Given the syntax from above, we can express assertions like

Ve.c ipre Counter.

C.owner =pre scd — C.countpyre = C.countypest,
to require that the count of any Counter owned by scd
is immutable across the to states. Notice that for legibility,
we annotate infix predicates rather than whole assertions,

e.g. we write c. owner=p,.scd to stand for (c. owner=scd)pre.

4.2 Policies and Validity

Policies can have one of the three following forms: 1) one-
state invariants of the form A, which require that A holds
at all visible states of a program; or 2) two-state invariants
of the form A{ code} B, which require that execution of
code in any state satisfying A will lead to a state satisfying
B wrt the original state or 3) any-code invariants of the
form A{ any_code} B which requires that execution of
any code in a state satisfying A will lead to a state satisfying
B wrt the original state.

Definition 12 (Policies).
Policy = A| A{code} B| A{any_code} B
PolSpec  ::=  spec Spcld{ Policy*}

Validity of one-state assertions We first define validity of

one-state assertions. Let o = (¢, x) be a state. Then write
olv] as shorthand for (p[v—], x).

Definition 13 (Validity of one-state assertions).
the validity an assertion A:

We define

E C Module x state x Assertion
using the notation M ;o |= A:

*M,o=eiff|e]u = true.

*M,o0 = R(es,...en) iff
M,o = Rle;/p1,...en/Dn]
where M (P) = predicate P (p;..p,){ A},
undefined, otherwise.
*M,o ke >esgiffler]mo > le2] Mo
M,o=A NAziff Mo = A and M,0 = As.
* M,o | 3x.A iff for some address v and some fresh
variable z € Varld, we have M, o[z — 1] |= Alz/x]
M, o = Vx. Aiff for all addresses . € dom(c), and fresh
variable z, we have M , o[z — 1] = Alz/x].
M,o = eciffo(le]m,s) 1= c
* M,oc E MayAffect( e, &) iff there exists method m,
arguments 3, state o', identifier z, such that M, o[z —
Le)tt,0), 2-m(3) ~ X', and | |at.0 # L a1 o
* M,o = MayAccess(e,e”) iff there exist fields fy,...
fn, SUch that | z.f1...f0 | M o[ zs | e)u0] = L€ M 0
M, o |= eobeys PolSpecld iff
Y (o, stmts) € Arising(M). Vie{1..n}.
Vo', stmts'. (o', stmts’) € Reach(M, o, stmts).
M,o'|z — |e]o] = Policy;|z/this]
where z is a fresh variable in o', and where we assume
that PolSpecld was defined as
specification PolSpecld { Policy,, ...Policy, },

Validity of two-state assertions Validity of two-state asser-
tions M, 0,0’ |= B is defined similarly to one-state asser-
tions, using cases:

Definition 14 (Validity of Two-state assertions). We define
the judgment

E C Module x state x state x TwoStateAssertion

using the notation M , 0,0’ |= B as follows
*M,o,0' E A ifM,d" = A,
where 0" = o if t=pre, and 0" = o’ otherwise.
C M,0,0" = o2 o iff L arns 2 | ot
where 01 = o if t=pre, and o1 = o’ otherwise,
and oo = o if ' =pre, and oo = o’ otherwise.
* M,o,0" = New(e) iff |e]m,o € dom(c’)\ dom(o)
* M,o,0' E By A By iff
M,o,0' = By and M,0,0' |= Bs.
* M,o,0’ |= Ix.B iff for some address v and fresh vari-
able z, we have M o[z — t],0’'[z — ] |= Blz/x].
*M,o,0/ =EVx.Biff M,0]z — i],0'[z — | E Blz/x]
holds for all addresses 1€ dom(o), and fresh variable z.

For example, for states oy, oo where |x.count |,, = 4 and
|x.count],2 = 14, we have

M,o1,09 E x. countypess = X.county.. -+ 1. And we also
have that M, 0,0’ £ x.countpye > 1, and M, 01,02 =
X.countpest > 1.

Adherence to Policies We can now define adherence to
policies, M, o [=po Policy: which ensures that the require-
ments of Policy are satisfied in any context arising from M.

Definition 15 (Adherence to Policies).
*M,ol=pa A iff Miocl=A
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* M,o =pot A{code} B iff
(M,0 A AN M,o,code ~ o
M,o,0' EB)
*M,o ':pol A {any_code} B iff
Veode. ( (o,code) € Arising(M) N M,o =
A AN M,o, code~ o’
— M,o,0/ EB)

—

In order to model open systems, it is crucial that we re-
quire that after linking any module with the module at hand,
the policy will be satisfied. For example, to express that M5
satisfies ValidSubject we need to allow any possible im-
plementation of validObserver as well as any other code
to be linked, and still ensure that the Escrow policies are sat-
isfied.

Definition 16 (Classes adhering to Specifications).

* M {=po1 Classld obeys PolSpecld iff
VM’ o.(0,_) € Arising(M = M').
M, 0 F=poi 0: Classld — oobeys PolSpecld

4.3 Modules

Modules, M, are mappings from predicate identifiers to
Chainmail assertions as described (and also from identi-
fiers to definitions in then underlying model programming
language.) We require implicitly for any module M that
M (P) € PredDescr or undefined.

Definition 1 (Modules).

Module = Classld — ClassDescr
Specification = ( Funld U Predld U Specld ) —
(FuncDescr U PredDescr U Specification )

The linking operator % combines module definitions, pro-
vided that the modules’ mappings have separate domains,
and performs no other checks. This reflects the open world
setting, where objects of different provenance interoperate
without a central authority. For example, taking M, as a
module implementing a counter, and M as another mod-
ule using the counter, M, and M, x M; will be well defined,
but M, * M, is not. We formally define linking M * M’, to
be the the union of modules’ respective mappings, provided
that the domains of the two modules are disjoint:

Definition 2 (Linking and Lookup). Linking of modules M

and M’ is
x : Module x Module —>.M0dule
MxM' = M*aux M/, lf dom(M)ﬁdom(M’):(Z)
1 otherwise.

, f M(id), if M(id) is defined
(M *aue M')(e) = { M'(id) otherwise.

5. Related Work

Behavioural Specification Languages Hatcliff et al. [18]
provide an excellent survey of contemporary specifica-
tion approaches. With a lineage back to Hoare logic [19]],

Meyer’s Design by Contract [34] was the first popular at-
tempt to bring verification techniques to object-oriented pro-
grams as a “whole cloth” language design in Eiffel. Several
more recent specification languages are now making their
way into practical and educational use, including JML [26],
Spect [1l], Dafny [27] and Whiley [44]. Our approach builds
upon these fundamentals, particularly Leino & Shulte’s for-
mulation of two-state invariants [28], and Summers and
Drossopoulou’s Considerate Reasoning [49].

Of particular relevance are recent aspect-oriented speci-
fication languages such as AspectJML [47] and AspectL.TL
[32]]. AspectIML is an aspect-oriented extension to JML, in
much the same way that Aspect] is an aspect-oriented ex-
tension to Java [25]]. AspectIML offers AspectJ-style point-
cuts that allow the definition of crosscutting specifications,
such as shared pre- or post-conditions for a range of method
calls. These crosscutting specifications can be checked dy-
namically along with traditional object-oriented JML asser-
tions. In contrast, Chainmail specifications naturally cross-
cut implementation and specification modules without any
special notation, although, lacking wildcards, Chainmail is
not as flexible as AspectIML. To our knowledge, the seman-
tics of AspectIML have yet to be defined formally, although
earlier work by Molderez and Janssens describes the formal
core of a similar language [39].

AspectLTL [32] is a specification language based on Lin-
ear Temporal Logic (LTL). AspectLTL adds cross-cutting
aspects to more traditional LTL module specifications: these
aspects can further constrain specifications in modules. In
that sense, AspectLTL and Chainmail both use similar im-
plicit join point models, rather than importing Aspect] style
explicit pointcuts as in AspectJML. AspectLTL has a formal
definition, as does Chainmail; unlike Chainmail, AspectLTL
has support for automated reasoning with an efficient syn-
thesis algorithm

In general, these all approaches assume a closed system,
where modules can be trusted to codperate. In this paper
we aim to illustrate the kinds of techniques required in an
open system where modules’ invariants must be protected
irrespective of the behaviour of the rest of the system.

Defensive Consistency Defensive Consistency was infor-
mally introduced by Miller [35] as part of his work on ob-
ject capabilities. To our knowledge, Murray’s is the only
prior attempt to formalise defensive consistency and cor-
rectness [41]. Murray’s model was rooted in counterfactual
causation [30]: an object is defensively consistent when the
addition of untrustworthy clients cannot cause well-behaved
clients to be given incorrect service. Unlike ours, his was for-
malised very abstractly, over models of (concurrent) object-
capability systems in the process algebra CSP [20], without a
specification language for describing effects, such as what it
means for an object to provide incorrect service. Both Miller
and Murray’s definitions are intensional, describing what it
means for an object to be defensively consistent. In contrast,
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Chainmail is meant for describing and reasoning about real
code, and we provide an expressive, extensional framework
for evaluating defensive consistency in actual open systems.

Object Capabilities and Sandboxes. Capabilities as a
means to support the development of concurrent and dis-
tributed system were developed in the 60’s by Dennis and
Van Horn [6], and were adapted to the programming lan-
guages setting in the 70’s [40]]. Object capabilities were first
introduced [35] in the early 2000s, and many recent studies
manage or verify safety or correctness of object capability
programs. Google’s Caja [38] applies sandboxes, proxies,
and wrappers to limit components’ access to ambient au-
thority. Sandboxing has been validated formally: Maffeis et
al. [31] develop a model of JavaScript, demonstrate that it
obeys two principles of object capability systems and show
how untrusted applications can be prevented from interfer-
ing with the rest of the system.

JavaScript analyses. More practically, Karim et al. ap-
ply static analysis on Mozilla’s JavaScript Jetpack exten-
sion framework [24], including pointer analyses. Bhargavan
et al. [3]] extend language-based sandboxing techniques to
support defensive components that can execute successfully
in otherwise untrusted environments. Politz et al. [45] use a
JavaScript type checker to check properties such as “multi-
ple widgets on the same page cannot communicate.” Lerner
et al. extend this system to ensure browser extensions ob-
serve “private mode” browsing conventions, such as that
“no private browsing history retained” [29]]. Dimoulas et al.
[9]] generalise the language and type checker based approach
to enforce explicit policies, that describe which components
may access, or may influence the use of, particular capabil-
ities. Alternatively, Taly et al. [51] model JavaScript APIs
in Datalog, and then carry out a Datalog search for an “at-
tacker” from the set of all valid API calls.

Verification of Dynamic Languages A few formal ver-
ification frameworks address JavaScript’s highly dynamic,
prototype-based semantics. Gardner et al. [[16] developed a
formalisation of JavaScript based on separation logic and
verified examples. Xiong and Qin et al. [46l 55] worked
on similar lines. Swamy et al. [S0] recently developed a
mechanised verification technique for JavaScript based on
the Dijkstra Monad in the F* programming language. Fi-
nally, Jang et al. [23]] developed a machine-checked proof of
five important properties of a web browser — again similar
to our any_code invariants — such as “cookies may not be
shared across domains” by writing the minimal kernel of the
browser in Haskell.

Verification of Object Capability Programs Drossopoulou
and Noble [10, 43] have analysed Miller’s Mint and Purse
example [35] by expressing it in Joe-E and in Grace [43]],
and discussed the six capability policies as proposed in [35].
In [12f], they sketched a complex specification language,
and used it to fully specify the six policies from [35]; their

formalisation showed that several possible interpretations
were possible. They also uncovered the need for another
four policies and formalised them as well, showing how
different implementations of the underlying Mint and Purse
systems coexist with different policies [11]. Most recently,
[15] they have shown how the combination of Chainmail, an
untyped featherweight core capability language Focal, and
novel Hoare logic, can verify a trust-sensitive example (the
escrow exchange) in an open world. In contrast, this work
focuses on the Chainmail specification language and how it
can be used to support defensive consistency.

6. Conclusions and Further Work

In this paper we addressed the question of how to specify
open systems in an open world. To answer this questions,
we contribute:

* The Chainmail specification language.

* Defensively consistent policies specified in Chainmail.

* A formal model of the semantics of Chainmail.
In further work we will extend our approach to deal with
concurrency, distribution, exceptions, networking, aliasing,
and encapsulation. We will also consider multi-dimensional
modularity constructs in implementations, as well as spec-
ifications. Finally, we hope to develop dynamic monitoring
and automated reasoning techniques to make these kinds of
specifications practically useful.
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