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Abstract
Object capabilities are increasingly used to reason informally about the properties of secure
systems. Can capabilities also aid in formal reasoning? To answer this question, we examine
a calculus that uses effects to capture resource use and extend it with a rule that captures the
essence of capability-based reasoning. We demonstrate that capabilities provide a way to reason
for free about effects: we can bound the effects of an expression based on the capabilities to
which it has access. This reasoning is “free” in that it relies only on type-checking (not effect-
checking); does not require the programmer to add effect annotations within the expression; nor
does it require the expression to be analysed for its effects. Our result sheds light on the essence
of what capabilities provide and suggests useful ways of integrating lightweight capability-based
reasoning into languages.
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1 Introduction

Capabilities have been recently gaining new attention as a promising mechanism for controlling
access to resources, particularly in object-oriented languages and systems [14, 5, 4, 3]. A
capability is an unforgeable token that can be used by its bearer to perform some operation
on a resource [2]. In a capability-safe language, all resources must be accessed through object
capabilities, and a resource-access capability must be obtained from an object that already
has it: “only connectivity begets connectivity” [14]. For example, a logger component that
provides a logging service would need to be initialised with an object capability providing
the ability to append to the log file.

Capability-safe languages thus prohibit the ambient authority [15] that is present in
non-capability-safe languages. An implementation of a logger in Java, for example, does not
need to be passed a capability at initialisation time; it can simply import the appropriate file-
access library and open the log file for appending itself. Critically, a malicious implementation
of such a component could also delete the log, read from another file, or exfiltrate logging
information over the network. Other mechanisms such as sandboxing can be used to limit
the effects of such malicious components, but recent work has found that Java’s sandbox (for
example) is difficult to use and is therefore often misused [1, 10].

In practice, reasoning about resource use in capability-based systems is mostly done
informally. But if capabilities are useful for informal reasoning, shouldn’t they also aid in
formal reasoning? Recent work sheds some light on this question by presenting a logic that
formalizes capability-based reasoning about trust between objects [5]. Two other trains of
work, rather than formalise capability-based reasoning itself, reason about how capabilities
may be used. Dimoulas et al. developed a formalism for reasoning about which components
may use a capability and which may influence (perhaps indirectly) the use of a capability [4].
Devriese et al. formulate an effect parametricity theorem that limits the effects of an object
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23:2 Capabilities: Effects for Free

based on the capabilities it possesses, and then use logical relations to reason about capability
use in higher-order settings [3] . Overall, this prior work presents new formal systems for
reasoning about capability use, or reasoning about new properties using capabilities.

We are interested in a different question: can capabilities be used to enhance formal
reasoning that is currently done without relying on capabilities? In other words, what value
do capabilities add to existing formal reasoning approaches?

To answer this question, we decided to pick a simple and practical formal reasoning system,
and see if capability-based reasoning could help. A natural choice for our investigation is
effect systems [16]. Effect systems are a relatively simple formal reasoning approach, and
keeping things simple will help to highlight the difference made by capabilities. Finally,
effects have an intuitive link to capabilities: in a system that uses capabilities to protect
resources, an expression can only have an effect on a resource if it is given a capability to do
so.

How could capabilities help with effects? One challenge to the wider adoption of effect
systems is their annotation overhead [18]. For example, Java’s checked exception system is a
kind of effect system, and is often criticised for being cumbersome [7]. Effect inference can be
used to reduce the annotations required [8], but this has significant drawbacks: understanding
error messages that arise through effect inference requires a detailed understanding of the
internal structure of the code, not just its interface. Capabilities are a promising alternative
for reducing the overhead of effect annotations, as suggested by the following example:

1 import log : String -> Unit with effect File.write
2

3 e

In the code above, written in a capability-safe language, what can we infer about the
effects on resources (e.g. the file system or network) of evaluating e? Since we are in a
capability-safe language, e has no ambient authority, and so the only way it can have any
effect on resources is via the log function it imports. Note that this reasoning requires
nothing about e other than that it obeys the rules of a capability-safe language; in particular,
we don’t require any effect annotations within e, and we don’t need to analyse its structure
as an effect inference would have to do. Also note that e might be arbitrarily large, perhaps
consisting of an entire program that we have downloaded from a source that we trust enough
to allow it to write to a log, but that we don’t trust to access any other resources. Thus in
this scenario, capabilities can be used to reason “for free” about the effect of a large body of
code based on a few annotations on the components it imports.

The central intuition that we formalise in this paper is this: the effect of an unannotated
expression can be given a bound based on the effects latent in variables that are in scope.
Of course, there are challenges to solve on the way, most notably involving higher-order
programs: how can we generalise this intuition if log takes a higher-order argument? If e
evaluates not to unit but to a function, what can we infer about that function’s effects?

In the remainder of this paper, we will formalise these ideas and explore these questions.
To demonstrate, we introduce a pair of languages: the operation calculus OC (Section 3)
and the capability calculus CC (Section 4). Although the current resurgence of interest
in capabilities is primarily focused on object-oriented languages, for simplicity our formal
definitions build on OC, a typed lambda calculus with a simple notion of capabilities and
their operations, in which all code is effect-annotated. Relaxing this requirement, we then
introduce CC, which permits the nesting of unannotated code inside annotated code in a
controlled, capability-safe manner. One can reason about the effects of the unannotated
code by inspecting the capabilities passed into it from its annotated surroundings. We then
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show how CC can model practical situations, presenting a range of examples to illustrate the
benefits of a capability-flavoured effect system.

Throughout this paper we give motivating examples in a capability-safe language that
supports first-class, object-like modules, similar to Wyvern [13]. We give several examples of
interacting modules — some annotated, some unannotated — and demonstrate how they can
be translated into our calculi to show how our type-and-effect system captures the properties
of capability-based languages, and how it can aid in modular reasoning. A more thorough
discussion of this translation is given in section 4. Several examples follow in section 5.

2 Operation Calculus (OC)

OC extends the simply-typed lambda calculus [17] with a notion of primitive capabilities and
their operations. Every function is annotated with the effects it may incur. Its static rules
associate a type and a set of effects to well-formed programs. Defining OC will introduce the
notations and concepts needed to understand CC, which allows developers to omit annotations
from some expressions and uses capability-based reasoning to bound the effects of those
expressions.

In a capability-safe language, “only connectivity begets connectivity” [15]: all access to a
capability must derive from previous access. To prevent an infinite regress, there are a set of
primitive capabilities passed into the program by the system environment. These primitive
capabilities provide operations for manipulating resources in the system environment. For
example, File might provide read/write operations on a particular file in the file system.
For convenience, we often conflate primitive capabilities with the resources they manipulate,
referring to both as resources. An effect in OC is a particular operation invoked on some
resource; for example, File.write. Functions in an OC program are (conservatively) annotated
with the effects they may incur when invoked. Annotations might be given in accordance
with the principle of least authority to specify the maximum authority a component may
exercise. When this authority is exceeded, an effect system like that of OC will reject the
program, signaling an unsafe implementation. For example, consider the pair of modules1 in
Figure 1: the functor logger (declared with module def) must be instantiated with a File
capability, and the resulting module exposes a single function log. The client module has
a single function run which, when passed a Logger, will invoke Logger.log.

1 module def logger(f:{File}):Logger
2

3 def log(): Unit with {File.append} =
4 f.read

1 module client
2

3 def run(l: Logger): Unit with {File.append} =
4 l.log()

Figure 1 The implementation of logger.log exceeds its specified authority.

client.run and logger.log are both annotated with {File.append}, but the (poten-

1 Our formal grammar, below, does not include this Wyvern-like module syntax, but we can model
the logger functor as a function and the client module as a record (which is itself encodable using
functions). See section 4 for details.
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tially malicious) implementation of logger.log incurs the File.read effect. In this section
we develop rules for OC that can determine such mismatches between specification and
implementation in annotated code.

OC makes some simplifying assumptions. The semantics of particular operations are not
modeled — our only interest is in what operations could be invoked, and by whom. Therefore,
we assume all operations are null-ary and return a dummy unit value; File.write(“hello, world!′′)
becomes File.write. Primitive capabilities and operations are fixed throughout execution
and cannot be created or destroyed.

2.1 Grammar (OC)
A grammar for OC programs is given in Figure 2. In addition to those from the lambda
calculus, there are two new forms. A resource literal r is a variable drawn from a fixed set R.
Resources model the primitive capabilities that the system passes into the program. File
and Socket are examples of resource literals. An operation call e.π is the invocation of an
operation π on e. For example, invoking the open operation on the File resource would be
File.open. Operations are drawn from a fixed set Π.

e ::= exprs :
| x variable

| v value

| e e application

| e.π operation call

v ::= values :
| r resource literal

| λx : τ.e abstraction

Figure 2 Grammar for OC programs.

An effect is a pair (r, π) ∈ R×Π. Sets of effects are denoted ε. As a shorthand, we write
r.π instead of (r, π). Effects should be distinguished from operation calls: an operation call
is the invocation of a particular operation on a particular resource in a program, while an
effect is a mathematical object describing this behaviour. The notation r.∗ is a short-hand
for the set {r.π | π ∈ Π}, which contains every effect on r. Sometimes we abuse notation by
conflating the effect r.π with the singleton {r.π}. We may also write things like {r1.∗, r2.∗},
which should be understood as the set of all operations on r1 and r2.

2.2 Semantics (OC)
During reduction an operation call may be evaluated. When this happens we say that a run
time effect has taken place. Reflecting this, the form of the single-step reduction judgement
is e −→ e′ | ε, meaning e reduces to e′, incurring the set of effects ε in the process. In the
case of single-step reduction, ε is at most a single effect. Rules for single-step reductions are
given in Figure 3.

The first three rules are analogous to reductions in the lambda calculus. E-App1 and
E-App2 incur the effects of reducing their subexpressions. E-App3 replaces free occurrences
of the formal name x in e with the actual value v2 being passed as an argument, which
incurs no effects. The notation for this is [v2/x]e. It is significant that variables are only
substituted for values: if x is replaced by an arbitrary expression, the substitution could be
introducing arbitrary effects. However, values incur no effects, so replacing x by a value will
not introduce any extra effects. Thus OC is a call-by-value language.
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e −→ e | ε

e1 −→ e′1 | ε
e1e2 −→ e′1 e2 | ε

(E-App1)
e2 −→ e′2 | ε

v1 e2 −→ v1 e
′
2 | ε

(E-App2)
(λx : τ.e)v2 −→ [v2/x]e | ∅

(E-App3)

e→ e′ | ε
e.π −→ e′.π | ε

(E-OperCall1)
r.π −→ unit | {r.π}

(E-OperCall2)

Figure 3 Single-step reductions in OC.

The first new rule is E-OperCall1, which reduces the receiver of an operation call; the
effects incurred are the effects incurred by reducing the receiver. When an operation π is
invoked on a resource literal r, E-OperCall2 will reduce it to unit, incurring {r.π} as a
result. For example, File.write −→ unit | {File.write} by E-OperCall2. unit can be
treated as a derived form; an explanation is given in section 4.

A multi-step reduction is a sequence of zero or more single-step reductions. The resulting
set of run time effects is the union of all the run time effects from the intermediate single-steps.
Rules for multi-step reductions are given in Figure 4. By E-MultiStep1, any expression
can “reduce” to itself with no run time effects. By E-MultiStep2, any single-step reduction
is also a multi-step reduction. If e −→ e′ | ε1 and e′ −→ e′′ | ε2 are sequences of reductions,
then so is e −→ e′′ | ε1 ∪ ε2, by E-MultiStep3.

e −→∗ e | ε

e→∗ e | ∅
(E-MultiStep1)

e→ e′ | ε
e→∗ e′ | ε

(E-MultiStep2)
e→∗ e′ | ε1 e′ →∗ e′′ | ε2

e→∗ e′′ | ε1 ∪ ε2
(E-MultiStep3)

Figure 4 Multi-step reductions in OC.

2.3 Static Rules (OC)
A grammar for types, contexts, and sets of effects is given in Figure 5. The base types of OC
are sets of resources, denoted {r̄}. If an expression e is associated with type {r̄}, it means e
will reduce to one of the literals in r̄ (assuming e terminates). The set of empty resources
(denoted ∅) is also a valid type, but has no inhabitants. There is a single type constructor
→ε, where ε is a concrete set of effects. τ1 →ε τ2 is the type of a function which takes a τ1
as input, returns a τ2 as output, and whose body incurs no more than those effects in ε. ε is
a conservative bound: if an effect r.π ∈ ε, it is not guaranteed to happen at run time, but if
r.π /∈ ε, it cannot happen at run time. A typing context Γ maps variables to types.

To illustrate the types of some functions, if log1 has the type {File} →{File.append}
Unit, then invoking log1 will either incur File.append or no effects. If log2 has the type
{File} →{File.∗} Unit, then invoking log2 could incur any effect on File, or no effects.

Knowing approximately what effects a piece of code may incur helps a developer determine
whether it can be trusted. For example, consider log3 = λf : {File}. e, which is a logging
function that takes a File as an argument and then executes e. Suppose this function were
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τ ::= types :
| {r̄} resource set

| τ →ε τ annotated arrow

ε ::= effects :
| {r.π} effect set

Γ ::= type ctx :
| ∅ empty ctx.

| Γ, x : τ var. binding

Figure 5 Grammar for types in OC.

to typecheck as {File} →{File.∗} Unit — seeing that invoking this function could incur
any effect on File, and not just its expected least authority File.append, a developer may
therefore decide this implementation cannot be trusted and choose not to execute it. In
this spirit, the static rules of OC associate well-typed programs with a type and a set of
effects: the judgement Γ ` e : τ with ε, means e will reduce to a term of type τ (assuming it
terminates), incurring no more effects than those in ε. Judgements are given in Figure 6.

Γ ` e : τ with ε

Γ, x : τ ` x : τ with ∅ (ε-Var) Γ, r : {r} ` r : {r} with ∅
(ε-Resource)

Γ, x : τ2 ` e : τ3 with ε3
Γ ` λx : τ2.e : τ2 →ε3 τ3 with ∅ (ε-Abs) Γ ` e1 : τ2 →ε τ3 with ε1 Γ ` e2 : τ2 with ε2

Γ ` e1 e2 : τ3 with ε1 ∪ ε2 ∪ ε
(ε-App)

Γ ` e : {r̄} with ε
Γ ` e.π : Unit with ε ∪ {r̄.π}

(ε-OperCall) Γ ` e : τ with ε τ <: τ ′ ε ⊆ ε′
Γ ` e : τ ′ with ε′

(ε-Subsume)

Figure 6 Type-with-effect rules in OC.

ε-Var approximates the run time effects of a variable as ∅. ε-Resource does the same
for resource literals. Though a resource captures several effects (namely, every possible
operation on itself), attempting to “reduce” a resource will incur no effects; something must
be done with the resource, such as an operation call, in order to have an effect. For a
similar reason, ε-Abs approximates the effects of a function literal as ∅, and ascribes an
arrow type annotated with those effects captured by the function. ε-App approximates a
lambda application as incurring those effects from evaluating the subexpressions and the
effects incurred by executing the body of the function to which the left-hand side evaluates.
The effects of the function body are taken from the function’s arrow type. An operation
call on a resource literal reduces to unit, so ε-OperCall ascribes its type as Unit. The
approximate effects of an operation call are: the effects of reducing the subexpression, and
then the operation π on every possible resource to which that subexpression might reduce.
For example, consider e.π, where Γ ` e : {File, Socket} with ∅. Then e could evaluate
to File, in which case the actual run time effect is File.π, or it could evaluate to Socket,
in which case the actual run time effect is Socket.π. Determining which will happen is, in
general, undecidable; the safe approximation is to treat them both as happening. The last
rule ε-Subsume produces a new judgement by widening the type or approximate effects on
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an existing one. Subtyping rules are given in Figure 7.

τ <: τ

τ ′1 <: τ1 τ2 <: τ ′2 ε ⊆ ε′

τ1 →ε τ2 <: τ ′1 →ε′ τ ′2
(S-Arrow) r ∈ r1 =⇒ r ∈ r2

{r̄1} <: {r̄2}
(S-Resource)

Figure 7 Subtyping judgements of OC.

S-Arrow is the standard rule for arrow types, but also stipulates that the effects on
the arrow of the subtype must be contained in the effects on the arrow of the supertype:
a valid subtype should not invoke any effects the supertype does not already know about.
S-Resource says that a subset of resources is a subtype. To illustrate, consider {r̄1} <: {r̄2}
— any value with type {r̄1} can reduce to any resource literal in r̄1, so to be compatible with
an interface {r̄2}, the resource literals in r̄1 must also be in r̄2.

These rules let us determine what sort of effects might be incurred when a piece of code
is executed. For example, consider rw = λx : {File, Socket}. x.write, which takes either a
File or a Socket and writes to it. If rw is applied, it could incur Socket.write or File.write,
depending on what had been passed. In general, there is no way to statically determine
what this will be, so the safe approximation is {File.write, Socket.write}. This is the
approximation given by a judgement like ` rw File : Unit with {File.write, Socket.write}.
A derivation of this judgement is given in Figure 8. To fit on the page, all resources and
operations have been abbreviated to their first letter and ε-Subsume assumes that by
ε-Resource we have ` F : {F} with ∅. A developer who only expects rw to be incurring
File.write can typecheck rw, see that it could also be writing to Socket, and decide it
should not be used. If client code was annotated with {File.write} and tried to use this
function, the type system would reject it.

(ε-Var)
x : {F, S} ` x : {F, S}

(ε-OpCall)
x : {F, S} ` x.w : Unit with {F.w, S.w}

(ε-Abs)
λx : {F, S}. x.w : {F, S} →{F.w,S.w} Unit with ∅

F ∈ {F, S}
(S-Res)

{F} <: {F, S}
(ε-Subsume)

` F : {F, S}
(ε-App)

` (λx : {F, S}. x.w) F : Unit with {F.w, S.w}

Figure 8 Derivation tree for ` rw File : Unit with {File.write, Socket.write}.

2.4 Soundness (OC)

To show the rules of OC are sound requires an appropriate notion of static approximations
being safe with respect to the reductions. If a judgement like Γ ` e : τ with ε were correct,
successive reductions on e should never incur effects not in ε. Furthermore, as e is reduced,
we learn more about what it is, so approximations on the reduced forms can only get more
specific; compare this with how the type of reduced expressions can only get more specific.
Adding this to the standard definition of soundness yields the following theorem statement.

I Theorem 1 (OC Single-step Soundness). If Γ ` eA : τA with εA and eA is not a value or
variable, then eA −→ eB | ε, where Γ ` eB : τB with εB and τB <: τA and εB ∪ ε ⊆ εA, for
some eB , ε, τB , εB.

CVIT 2016
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Our approach to proving soundness is to show progress and preservation. Noting that
the rules for values give ∅ as their approximate effects, the proof of the progress theorem is
routine.

I Theorem 2 (OC Progress). If Γ ` e : τ with ε and e is not a value or variable, then
e −→ e′ | ε′, for some e′, ε′ ⊆ ε.

Proof. By induction on derivations of Γ ` e : τ with ε. J

To show preservation we need to know that effect safety is preserved by the substitution
in E-App3. The semantics are call-by-value, so the name of a function argument is only
ever replaced with a value, and we know that the approximate effects of values are ∅, so the
substitution does not introduce more effects. Beyond this observation, the proof is routine.

I Theorem 3 (OC Preservation). If Γ ` eA : τA with εA and eA −→ eB | ε, then Γ ` eB :
τB with εB, where τB <: τA and εB ∪ ε ⊆ εA, for some eB , ε, τB , εB.

Proof. By induction on the derivations of Γ ` eA : τA with εA and eA −→ eB | ε. J

The single-step soundness theorem now holds by combining progress and preservation.
The soundness of multi-step reductions follows by inducting on the length of a multi-step
and appealing to single-step soundness.

I Theorem 4 (OC Single-step Soundness). If Γ ` eA : τA with εA and eA is not a value or
variable, then eA −→ eB | ε, where Γ ` eB : τB with εB and τB <: τA and εB ∪ ε ⊆ εA, for
some eB , ε, τB , εB.

Proof. If eA is not a value or variable then the reduction exists by the progress theorem.
The rest follows by the preservation theorem. J

I Theorem 5 (OC Multi-step Soundness). If Γ ` eA : τA with εA and eA −→∗ eB | ε, then
Γ ` eB : τB with εB, where τB <: τA and εB ∪ ε ⊆ εA.

Proof. By induction on the length of the multi-step reduction. J

3 Capability Calculus (CC)

OC requires every function to be annotated. The verbosity of such effect systems has been
given as a reason for why they have not seen widespread use [18] — if we relax the requirement
that all code be annotated, can a type system say anything useful about the parts which are
not? Allowing a mix of annotated and unannotated code helps reduce the cognitive overhead
on developers, allowing them to rapidly prototype in the unannotated sublanguage and
incrementally add annotations as they are needed. However, reasoning about unannotated
code is difficult in general. Figure 9 demonstrates why: someMethod takes a function f as
input and executes it, but the effects of f depend on its implementation. Without more
information, there is no way to know what effects might be incurred by someMethod.

1 def someMethod(f: Unit → Unit):
2 f()

Figure 9 What effects can someMethod incur?

A capability-safe design can help us: because the only authority code can exercise is that
which is explicitly given to it, the only capabilities that the unannotated code can use must
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be passed into it. If these capabilities are being passed in from an annotated environment,
we know what effects they capture. These effects are therefore a conservative upper bound
on what can happen in the unannotated code. To demonstrate, consider a developer who
wants to decide whether to use the logger functor in Figure 10. It must be instantiated
with two capabilities, File and Socket, and provides an unannotated function log.

1 module def logger(f:{File},s:{Socket}):Logger
2

3 def log(x: Unit): Unit
4 ...

Figure 10 In a capability-safe setting, logger can only exercise authority over the File and
Socket capabilities given to it.

What effects will be incurred if Logger.log is invoked? One approach is to manually2
examine its source code, but this is tedious and error-prone. In many real-world situations,
the source code may be obfuscated or unavailable. A capability-based argument can do
better: the only authority which Logger can exercise is that which it has been explicitly
given. Here, the Logger requires a File and a Socket, so {File.∗, Socket.∗} is an upper
bound on the effects of Logger. Knowing Logger could be performing arbitrary reads and
writes to File, or arbitrary communication with the Socket, the developer decides this
implementation cannot be trusted and does not use it.

The reasoning we employed only required us to examine the interface of the unannotated
code for the capabilities passed into it. To model this situation in CC, we add a new import
expression that selects what authority ε the unannotated code may exercise. In the above
example, the expected least authority of Logger is {File.append}, so that is what the
corresponding import would select. The type system can then check if the capabilities being
passed into the unannotated code exceed its selected authority. If it accepts, then ε safely
approximates the effects of the unannotated code. This is the key result: when unannotated
code is nested inside annotated code, capability-safety enables us to make a safe inference
about its effects by examining what capabilities are being passed in by the annotated code.

3.1 Grammar (CC)

The grammar of CC is split into rules for annotated code and analogous rules for unannotated
code. To distinguish the two, we put a hat above annotated types, expressions, and contexts:
ê, τ̂ , and Γ̂ are annotated, while e, τ , and Γ are unannotated. The rules for unannotated
programs and their types are given in Figure 11. They are much the same as in OC, but the
type constructor → is not annotated with a set of effects: the type τ1 → τ2 says nothing
about what effects may or may not happen when the function is executed. Unannotated types
τ are built using → and sets of resources {r̄}. An unannotated context Γ maps variables to
unannotated types.

Rules for annotated programs and their types are given in Figure 12. Except for the new
import expression, the rules are identical to those in OC, except now everything has a hat
above it.

2 or automatically—but if the automation produces an unexpected result we must fall back to manual
reasoning to understand why.

CVIT 2016
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e ::= exprs :
| x variable

| v value

| e e application

| e.π operation

v ::= values :
| r resource literal

| λx : τ.e abstraction

τ ::= types :
| {r̄}
| τ → τ

Γ ::= type ctx :
| ∅
| Γ, x : τ

ε ::= effects :
| {r.π} effect set

Figure 11 Unannotated programs and types in CC.

ê ::= labeled exprs :
| x

| v̂

| ê ê

| ê.π

| import(εs) x = ê in e import

v̂ ::= labeled values :
| r

| λx : τ̂ .ê

τ̂ ::= annotated types :
| {r̄}
| τ̂ →ε τ̂

Γ̂ ::= annotated type ctx :
| ∅
| Γ̂, x : τ̂

ε ::= effects :
| {r.π} effect set

Figure 12 Annotated programs and types in CC.

The new form is import(εs) x = ê in e, modelling the points at which capabilities
are passed from annotated code into unannotated code. e is the unannotated code. ê

is the capability being given to it; we call ê an import. For simplicity, we assume only
one capability is being passed into e. ê is associated with the name x inside e. εs is the
maximum authority that e is allowed to exercise (its “selected authority”). As an example,
suppose an unannotated Logger, which requires File, is expected to only append to a
file, but has an implementation that writes. This would be modelled by the expression
import(File.append) x = File in λy : Unit. x.write.

import is the only way to mix annotated and unannotated code, because it is the only
situation in which we can say something interesting about the unannotated code. For the
rest of our discussion on CC, we will only be interested in unannotated code when it is
encapsulated by an import expression.

One of the requirements of capability safety is there be no ambient authority. This
requirement is met by forbidding resource literals r from being used directly inside an import
statement (they can still be passed in as a capability via the import’s binding variable
x). We could enforce this syntactically, by removing r from the language of unannotated
expressions, but we choose to do it instead using the typing rule for import, given below.
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3.2 Semantics (CC)

Reductions are defined on annotated expressions. Excluding import, the annotated sublan-
guage of CC is the same as OC, so we take every reduction rule of OC as a valid reduction rule
in CC. For brevity, they are not restated.

If unannotated code e is wrapped inside annotated code import(εs) x = ê in e, we
transform it into annotated code by recursively annotating its parts with εs. In practice, it
is meaningful to execute purely unannotated code — but our only interest is when that code
is wrapped inside an import expression, so we do not bother to give rules for it. There are
two new rules for reducing import expressions, given in Figure 13: E-Import1 reduces the
capability being imported, while E-Import2 first annotates e with its selected authority
ε — this is annot(e, ε) — and then substitutes the import v̂ for its name x in e — this is
[v̂/x]annot(e, ε).

ê −→ ê | ε

ê −→ ê′ | ε′

import(εs) x = ê in e −→ import(εs) x = ê′ in e | ε′
(E-Import1)

import(εs) x = v̂ in e −→ [v̂/x]annot(e, εs) | ∅
(E-Import2)

Figure 13 New single-step reductions in CC.

annot(e, ε) produces the expression obtained by recursively annotating the parts of e with
the set of effects ε. A definition is given in Figure 14. There are versions of annot defined
for expressions and types. Later we shall need to annotate contexts, so the definition is
given here. It is worth mentioning that annot operates on a purely syntatic level — nothing
prevents us from annotating a program with something unsafe, so any use of annot must be
justified.

annot :: e× ε→ ê

annot(r,_) = r
annot(λx : τ1.e, ε) = λx : annot(τ1, ε).annot(e, ε)
annot(e1 e2, ε) = annot(e1, ε) annot(e2, ε)
annot(e1.π, ε) = annot(e1, ε).π

annot :: τ × ε→ τ̂

annot({r̄},_) = {r̄}
annot(τ1 → τ2, ε) = annot(τ1, ε)→ε annot(τ2, ε).

annot :: Γ× ε→ Γ̂

annot(∅,_) = ∅
annot(Γ, x : τ, ε) = annot(Γ, ε), x : annot(τ, ε)

Figure 14 Definition of annot.
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3.3 Static Rules (CC)
A term can be annotated or unannotated, so we need to be able to recognise when either is
well-typed. We do not reason about the effects of unannotated code directly, so judgements
about them have the form Γ ` e : τ . Subtyping judgements have the form τ <: τ . A summary
of the rules for unannotated judgements is given in Figure 15. Each is analogous to some
rule in OC, but the parts relating to effects have been removed.

Γ ` e : τ

Γ, x : τ ` x : τ (T-Var) Γ, r : {r} ` r : {r}
(T-Resource) Γ, x : τ1 ` e : τ2

Γ ` λx : τ1.e : τ1 → τ2
(T-Abs)

Γ ` e1 : τ2 → τ3 Γ ` e2 : τ2
Γ ` e1 e2 : τ3

(T-App)
Γ ` e : {r̄}

Γ ` e.π : Unit
(T-OperCall)

τ <: τ

τ ′1 <: τ1 τ2 <: τ ′2
τ1 → τ2 <: τ ′1 → τ ′2

(S-Arrow)
{r̄1} ⊆ {r̄2}
{r̄1} <: {r̄2}

(S-Resources)

Figure 15 (Sub)typing judgements for the unannotated sublanguage of CC

Since the annotated subset of CC contains OC, all the OC judgements apply, but now we
put hats on everything to signify that a typing judgement is being made about annotated
code inside an annotated context. This looks like Γ̂ ` ê : τ̂ with ε. Except for notation the
judgements are the same, so we shall not repeat them. The only new rule is ε-Import, given
in Figure 24, which gives the type and approximate effects of an import expression. This
is the only way to reason about what effects might be incurred by some unannotated code.
The rule is complicated, so to explain it we shall start with a simplified version and spend
the rest of this section building up to the final version of ε-Import.

To begin, typing import(εs) x = ê in e in a context Γ̂ requires us to know that the
import ê is well-typed, so we add the premise Γ̂ ` ê : τ̂ with ε1. Since x = ê is an import, it
can be used throughout e. We do not want e to exercise authority it hasn’t explicitly selected,
so whatever capabilities it uses must be selected by the import expression; therefore, we
require that e can be typechecked using only the binding x : τ̂ . There is a problem though:
e is unannotated and τ̂ is annotated, and there is no rule for typechecking unannotated code
in an annotated context. To get around this, we define a function erase in Figure 16 which
removes the annotations from a type. We then add x : erase(τ̂) ` e : τ as a premise.
erase :: τ̂ → τ

erase({r̄}) = {r̄}
erase(τ̂1 →ε τ̂2) = erase(τ̂1)→ erase(τ̂2)

Figure 16 Definition of erase.

Note that, since the environment Γ for e has only one binding (for x), it cannot contain
any bindings of resource literals—and the rule T-Resource requires a binding in the
environment in order to type a resource literal in an expression. Typing e in the restricted
environment given by import thus prohibits ambient authority.
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The first version of ε-Import is given in Figure 17. Since import(εs) x = v̂ in e −→
[v̂/x]annot(e, εs) by E-Import2, the ascribed type is annot(τ, ε), which is the type of the
unannotated code, annotated with its selected authority εs. The effects of the import are
ε1 ∪ εs — the former comes from reducing the imported capability, which happens before
the body of the import is annotated and executed, and the latter contains all the effects
which the unannotated code might incur.

Γ̂ ` ê : τ̂ with ε1 x : erase(τ̂) ` e : τ
Γ̂ ` import(εs) x = ê in e : annot(τ, εs) with εs ∪ ε1

(ε-Import1-Bad)

Figure 17 A first (incorrect) rule for type-and-effect checking import expressions.

At the moment there is no relation between the selected authority ε and those effects
captured by the imported capability ê. Consider ê′ = import(∅) x = File in x.write, which
imports a File and writes to it, but declares its authority as ∅. According to ε-Import1,
` ê′ : Unit with ∅, but this is clearly wrong since ê′ writes to File. An import should
only be well-typed if the capability being imported only captures effects contained in the
unannotated code’s selected authority ε. In this case, File captures {File.∗}, which is not
contained in the selected authority ∅, so it should be rejected for that reason. To this end we
define a function effects, which collects the set of effects that an annotated type captures.
A first (but not yet correct) definition is given in Figure 18. We can then add the premise
effects(τ̂) ⊆ εs to require that any imported capability must not capture authority beyond
that selected in εs. The updated rule is given in Figure 19.

effects :: τ̂ → ε

effects({r̄}) = {r.π | r ∈ r̄, π ∈ Π}
effects(τ̂1 →ε τ̂2) = effects(τ̂1) ∪ ε ∪ effects(τ̂2)

Figure 18 A first (incorrect) definition of effects.

Γ̂ ` ê : τ̂ with ε1 x : erase(τ̂) ` e : τ effects(τ̂) ⊆ εs

Γ̂ ` import(εs) x = ê in e : annot(τ, εs) with ε ∪ ε1
(ε-Import2-Bad)

Figure 19 A second (still incorrect) rule for type-and-effect checking import expressions.

The counterexample from before is now rejected by ε-Import2, but there are still issues:
the annotations on one import can be broken by another import. To illustrate, consider
Figure 20 where two3 capabilities are imported. This program imports a function go which,
when given a Unit→∅ Unit function with no effects, will execute it. The other import is
File. The unannotated code creates a Unit → Unit function which writes to File and
passes it to go, which subsequently incurs File.write.

In the world of annotated code it is not possible to pass a file-writing function to go,
but because the judgement x : erase(τ̂) ` e : τ discards the annotations on go, and since

3 Our formalisation only permits a single capability to be imported, but this discussion leads to a
generalisation needed for the rules to be safe when multiple capabilities can be imported. In any case,
importing multiple capabilities can be handled with an encoding of pairs.
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1 import({File.*})
2 go = λx: Unit →∅ Unit. x unit
3 f = File
4 in
5 go (λy: Unit. f.write)

Figure 20 Permitting multiple imports will break ε-Import2.

the file-writing function has type unit → unit, the unannotated world accepts it. The
approximation is actually safe at the top-level, because the import selects {File.∗}, which
contains File.write — but it contains code that violates the type signature of go. We want
to prevent this.

If go had the type Unit →{File.write} Unit the above example would be safe, but a
modified version where a file-reading function is passed to go would have the same issue. go
is only safe when it expects every effect that the unannotated code might pass to it: if go had
the type Unit→{File.∗} Unit, then the unannotated code cannot pass it a capability with an
effect it isn’t already expecting, so the annotation on go cannot be violated. Therefore, we
require imported capabilities to have authority to incur the effects in ε. To achieve greater
control in how we say this, the definition of effects is split into two separate functions
called effects and ho-effects. The latter is for higher-order effects, i.e. the effects that
are not captured within a function, but rather are possible because of what it is passed as an
argument. If values of τ̂ possess a capability that can be used to incur the effect r.π, then
r.π ∈ effects(τ̂). If values of τ̂ can incur an effect r.π, but need to be given the capability
(as a function argument) by someone else in order to do it, then r.π ∈ ho-effects(τ̂).
Definitions are given in Figure 21.

effects :: τ̂ → ε

effects({r̄}) = {r.π | r ∈ r̄, π ∈ Π}
effects(τ̂1 →ε τ̂2) = ho-effects(τ̂1) ∪ ε ∪ effects(τ̂2)

ho-effects :: τ̂ → ε

ho-effects({r̄}) = ∅
ho-effects(τ̂1 →ε τ̂2) = effects(τ̂1) ∪ ho-effects(τ̂2)

Figure 21 Effect functions (corrected).

effects and ho-effects are mutually recursive, with base cases for resource types. Any
effect can be directly incurred by a resource on itself, hence effects({r̄}) = {r.π | r ∈ r̄, π ∈
Π}. A resource cannot be used to indirectly invoke some other effect, so ho-effects({r̄}) = ∅.
The mutual recursion echoes the subtyping rule for functions. Recall that functions are
contravariant in their input type and covariant in their output; likewise, both functions
recurse on the input-type using the other function, and recurse on the output-type using the
same function.

In light of these new definitions, we still require effects(τ̂) ⊆ εs — unannotated
code must select any effect its capabilities can incur — but we add a new premise εs ⊆
ho-effects(τ̂), stipulating that imported capabilities must know about every effect they
could be given by the unannotated code (which is at most ε). The counterexample from
Figure 20 is now rejected, because ho-effects((Unit →∅ Unit) →∅ Unit) = ∅, but
{File.∗} 6⊆ ∅. However, this is still not sufficient! Consider εs ⊆ ho-effects(τ̂1 →ε′ τ̂2).
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We want every higher-order capability involved to be expecting εs. Expanding the definition of
ho-effects, this is the same as εs ⊆ effects(τ̂1)∪ho-effects(τ̂2). Let r.π ∈ εs and suppose
r.π ∈ effects(τ̂1), but r.π /∈ ho-effects(τ̂2). Then εs ⊆ effects(τ̂1) ∪ ho-effects(τ̂2) is
still true, but τ̂2 is not expecting r.π. Unannotated code could then violate the annotations on
τ̂2 by passing it a capability for r.π, using the same trickery as before. The cause of the issue is
that ⊆ does not distribute over ∪. We want a relation like εs ⊆ effects(τ̂1)∪ho-effects(τ̂2),
which also implies εs ⊆ effects(τ̂1) and εs ⊆ effects(τ̂2). Figure 22 defines this: safe
is a distributive version of εs ⊆ effects(τ̂) and ho-safe is a distributive version of εs ⊆
ho-effects(τ̂).

safe(τ̂ , ε)

safe({r̄}, ε)
(Safe-Resource)

ε ⊆ ε′ ho-safe(τ̂1, ε) safe(τ̂2, ε)
safe(τ̂1 →ε′ τ̂2, ε)

(Safe-Arrow)

ho-safe(τ̂ , ε)

ho-safe({r̄}, ε)
(HOSafe-Resource)

safe(τ̂1, ε) ho-safe(τ̂2, ε)
ho-safe(τ̂1 →ε′ τ̂2, ε)

(HOSafe-Arrow)

Figure 22 Safety judgements in CC.

An amended version of ε-Import is given in Figure 23. It contains a new premise
ho-safe(τ̂ , εs) which formalises the notion that every capability which could be given to a
value of τ̂ — or any of its constituent pieces — must be expecting the effects εs it might be
given by the unannotated code.

Γ̂ ` ê : τ̂ with ε1 effects(τ̂) ⊆ εs

ho-safe(τ̂ , εs) x : erase(τ̂) ` e : τ

Γ̂ ` import(εs) x = ê in e : annot(τ, εs) with ε ∪ ε1
(ε-Import3-Bad)

Figure 23 A third (still incorrect) rule for type-and-effect checking import expressions.

The premises so far restrict what authority can be selected by unannotated code, but what
about authority passed as a function argument? Consider the example ê = import(∅) x =
unit in λf : File. f.write. The unannotated code selects no capabilities and returns
a function which, when given File, incurs File.write. This satisfies the premises in
ε-Import3, but its annotated type is {File} →∅ Unit — not good!

Suppose the unannotated code defines a function f , which gets annotated with εs to
produce annot(f, εs). Suppose annot(f, εs) is invoked at a later point in the annotated
world and incurs the effect r.π. What is the source of r.π? If r.π was selected by the
import expression surrounding f , it is safe for annot(f, εs) to incur this effect. Otherwise,
annot(f, εs) may have been passed an argument which can be used to incur r.π, in which
case r.π is a higher-order effect of annot(f, εs). If the argument is a function, then r.π ∈ εs
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by the soundness of OC (or it would not typecheck). If the argument is a resource r, then
annot(f, εs) may exercise r.π without declaring it — this is the case we do not yet account
for.

We want εs to contain every effect captured by resources passed into annot(f, εs) as
arguments. We can do this by inspecting the (unannotated) type of f for resource sets. For
example, if the unannotated type is {File} → Unit, then we need {File.∗} in εs. To do
this, we add a new premise ho-effects(annot(τ,∅)) ⊆ εs. ho-effects is only defined on
annotated types, so we first annotate τ with ∅. We are only inspecting the resources passed
into f as arguments, so the annotations are not relevant – annotating τ with ∅ is therefore
a good choice. We can now handle the example from before. The unannotated code types
via the judgement x : Unit ` λf : {File}. f.write : {File} → Unit. Its higher-order effects
are ho-effects(annot({File} → Unit,∅)) = {File.∗}, but {File.∗} 6⊆ ∅, so the example
is safely rejected.

The final version of ε-Import is given in Figure 24. With it, we can now model the
example from the beginning of this section, where the Logger selects the File capability and
exposes an unannotated function log with type Unit→ Unit and implementation e. The
expected least authority of Logger is {File.append}, so its corresponding import expression
would be import(File.append) f = File in λx : Unit. e. The imported capability is
f = File, and effects({File}) = {File.∗} 6⊆ {File.append}, so this example is safely
rejected: Logger.log has authority to do anything with File, and its implementation e

might be violating its stipulated least authority {File.append}.

effects(τ̂) ∪ ho-effects(annot(τ,∅)) ⊆ εs

Γ̂ ` ê : τ̂ with ε1 ho-safe(τ̂ , εs) x : erase(τ̂) ` e : τ

Γ̂ ` import(εs) x = ê in e : annot(τ, εs) with εs ∪ ε1
(ε-Import)

Figure 24 The final rule for typing imports.

3.4 Soundness (CC)
Only annotated programs can be reduced and have their effects approximated, so the
soundness theorem only applies to annotated judgements. Its statement is given below.

I Theorem 6 (CC Single-step Soundness). If Γ̂ ` êA : τ̂A with εA and êA is not a value,
then êA −→ êB | ε, where Γ̂ ` êB : τ̂B with εB and τ̂B <: τ̂A and εB ∪ ε ⊆ εA, for some
êB , ε, τ̂B , εB.

Because the rules of OC, proven sound in section 2, are also rules of CC, we do not repeat
them here. The progress theorem has a new case for when the typing rule used is ε-Import,
but the proof is routine.

I Theorem 7 (CC Progress). If Γ̂ ` ê : τ̂ with ε and ê is not a value, then ê −→ ê′ | ε′, for
some ê′, ε′ ⊆ ε.

Proof. By induction on derivations of Γ̂ ` ê : τ̂ with ε. J

The preservation theorem also has an extra case for when the typing rule used is ε-
Import, with two subcases, depending on whether the reduction rule used was E-Import1
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and E-Import2. The former is straightforward, but the latter is tricky; we need several
lemmas to do it. Firstly, since εs is an upper bound on what effects can be incurred by the
unannotated code, it should also be an upper bound on what effects can be incurred by
the capabilities passed into the unannotated code. Therefore, if we take τ̂ and replace its
annotations with εs, we should get a more general function type annot(erase(τ̂), εs). This
result is given as the pair of lemmas below.

I Lemma 8 (CC Approximation 1). If effects(τ̂) ⊆ ε and ho-safe(τ̂ , ε) then τ̂ <: annot(erase(τ̂), ε).

I Lemma 9 (CC Approximation 2). If ho-effects(τ̂) ⊆ ε and safe(τ̂ , ε) then annot(erase(τ̂), ε) <:
τ̂ .

Proof. By simultaneous induction on derivations of ho-safe(τ̂ , ε) and safe(τ̂ , ε). J

Recall that function types are contravariant in their input, so the subtyping and subsetting
relations flip direction when considering the input type of a function. This is why there are
two lemmas: one for each direction.

Now, if E-Import2 is applied, the reduction has the form import(εs) x = v̂i in e −→
[v̂i/x]annot(e, εs) | ∅. Since x : erase(τ̂) ` e : τ , it is reasonable to expect (1) Γ̂ `
annot(e, εs) : annot(τ, εs) with εs is true — the reduction annotates e with εs, so the type
after annotation ought to be the type of e, annotated with εs, i.e. annot(τ, εs). Furthermore,
annot(e, εs) has the same structure as e — the annotations do not change what capabilities
can be used, so the bound εs on the authority of e also bounds the authority of annot(e, εs).
Now, if judgement (1) holds, then Γ̂ ` [v̂i/x]annot(e, εs) : annot(τ, εs) with εs would hold
by the substitution lemma (remembering we only substitute values, as not to introduce extra
effects). That judgement (1) does hold is the subject of the following lemma.

I Lemma 10 (CC Annotation). If the following are true:

1. Γ̂ ` v̂ : τ̂ with ∅
2. Γ, y : erase(τ̂) ` e : τ
3. effects(τ̂) ∪ ho-effects(annot(τ,∅)) ∪ effects(annot(Γ,∅)) ⊆ εs

4. ho-safe(τ̂ , εs)

Then Γ̂, annot(Γ, εs), y : τ̂ ` annot(e, εs) : annot(τ, εs) with εs.

The premises of the lemma are very specific to the premises of ε-Import, but generalised
to accommodate a proof by induction: e is allowed to typecheck with bindings in Γ, so long
as Γ does not introduce any resources whose authority is not already in εs. We need Γ to
keep track of effects introduced by function arguments. For example, typechecking f.write
requires a binding for f , but λf : {File}. f.write does not. Proving the lemma requires
us to inductively step into the bodies of functions, at which point we need to keep track
of what has been bound — to do this, we permit e to typecheck in a larger environment
Γ. We stipulate effects(annot(Γ,∅)) ⊆ εs so any effects captured by Γ are not ambient.
Note that when Γ = ∅ we have exactly the premises of ε-Import, so when we apply the
annotation lemma in the proof of preservation, we choose Γ = ∅. A proof-sketch of the
annotation lemma is given below.

Proof. By induction on derivations of Γ, y : erase(τ̂i) ` e : τ .

Case: T-Var. Then e = x. If x 6= y use ε-Var and ε-Subsume. Otherwise x = y.
Then y : erase(τ̂) ` x : τ implies that erase(τ̂) = τ . Apply the approximation lemma and
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simplify to obtain τ̂ <: annot(τ, εs), then use ε-Subsume to get the result.

Case: T-Resource. Use ε-Resource and ε-Subsume.

Case: T-Abs. Use inversion to get a judgement for the body of the function Γ, y :
erase(τ̂), x : τ2 ` ebody : τ3 with εs. Apply the inductive hypothesis to ebody with Γ, x : τ2 as
the context in which ebody typechecks, noting the premises for the inductive application are
satisfied because ho-effects(annot(τ,∅)) ⊆ εs implies effects(annot(τ1,∅) ⊆ εs. Then
use ε-Abs and ε-Subsume.

Case: T-App. Apply the inductive assumption to the subexpressions, then use ε-App
and simplify.

Case: T-OperCall. Apply the inductive hypothesis to the receiver and use ε-
OperCall. This gives the approximate effects εs ∪ {r̄.π}. Consider where the binding for
{r̄} is in Γ̂, annot(Γ, εs), y : τ̂ and conclude that {r̄.π} ⊆ εs. J

Armed with the annotation lemma, we can now prove preservation.

I Theorem 11 (CC Preservation). If Γ̂ ` êA : τ̂A with εA and êA −→ êB | ε, then Γ̂ ` êB :
τ̂B with εB, where êB <: êA and ε ∪ εB ⊆ εA, for some êB , ε, τ̂B , εB.

Proof. By induction on derivations of Γ̂ ` êA : τ̂A with εA and êA −→ êB | ε.

Case: ε-Import. Then eA = import(εs) x = ê in e. If the reduction rule used was
E-Import1 then the result follows by applying the inductive hypothesis to ê. Otherwise
ê is a value and the reduction used was E-Import2. Apply the annotation lemma with
Γ = ∅ to get the judgement Γ̂, x : τ̂ ` annot(e, εs) : annot(τ, εs) with εs. By assumption,
Γ̂ ` v̂ : τ̂ with ∅, so the substitution lemma applies, giving Γ̂ ` [v̂/x]annot(e, ε) : annot(τ, εs).
Then εB = εs = εA ∪ ε and τA = τB = annot(τ, εs). J

From progress and preservation we can prove the single-step and multi-step soundness
theorems for CC. Their proofs are identical to the ones in OC.

I Theorem 12 (CC Single-step Soundness). If Γ̂ ` êA : τ̂A with εA and êA is not a value,
then êA −→ êB | ε, where Γ̂ ` êB : τ̂B with εB and τ̂B <: τ̂A and εB ∪ ε ⊆ εA, for some êB,
ε, τ̂B, and εB.

I Theorem 13 (CC Multi-step Soundness). If Γ̂ ` êA : τ̂A with εA and êA −→∗ eB | ε, then
Γ̂ ` êB : τ̂B with εB, where τ̂B <: τ̂A and εB ∪ ε ⊆ εA, for some τ̂B, εB.

4 Translations

In this section we develop notation and techniques so our calculi can express the practical
examples of the next section. To do this, we show how to encode unit and let in CC, make
some simplifying assumptions, and show how Wyvern-like programs can be translated into
CC. With these, we hope to convince the reader that CC adequately captures the properties
of capability-safe languages.
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4.1 Unit, Let
The unit literal is defined as unit def= λx : ∅. x. It is the same in both annotated and
unannotated code. In annotated code, it has the type Unit def= ∅→∅ ∅, while in unannotated
code it has the type Unit def= ∅→ ∅. These are technically two separate types, but we will
not distinguish between them. Note that unit is a value, and because ∅ is uninhabited
(there is no empty resource literal), unit cannot be applied to anything. Furthermore,
` unit : Unit with ∅ by ε-Abs, and ` unit : Unit by T-Abs. We use Unit to represent
the absence of information, such as when a function takes no input or returns no value

The expression let x = ê1 in ê2 reduces ê1 to a value v̂1, binds it to the name x in ê2,
and then executes [v̂1/x]ê2. If Γ̂ ` ê1 : τ̂1 with ε1, then let x = ê1 in ê2

def= (λx : τ̂1.ê2)ê1
4.

If ê1 is a non-value, we can reduce the let by E-App2. If ê1 is a value, we may apply
E-App3, which binds ê1 to x in ê2. let expressions can be typed using ε-App.

4.2 Modules
Wyvern’s modules are first-class, desugaring into objects — invoking a module’s function is
no different from invoking an object’s method. Figure 25 shows an example of two modules.
The first defines a single operation tick that takes an argument file and appends to it; the
second is actually a functor that takes the file as a module-level argument and uses that in
the operation defined. Modules are declared with the module keyword, and we use module
def for functors.

1 module Mod: FileTicker
2

3 def tick(f: {File}): Unit with {File.append}
4 f.append

1 module def Ftor(f: {File}): UnitTicker
2

3 def tick(): Unit with {File.append}
4 f.append

Figure 25 Definition of two modules, the second of which is a functor.

Functors must be instantiated with appropriate arguments in order to produce a usable
module. When they are instantiated they are given the capabilities they require. In Figure
25, Ftor requests the use of a File capability. Figure 26 demonstrates how the two modules
above would be used. To prevent infinite regress the File must, at some point, be introduced
into the program. This happens in the client program. When the program begins execution,
the File capability is passed into the program from the system environment. The program
then imports modules and instantiates functors with the capabilities they require. If a
module is annotated, its function signatures will have effect annotations. For example,
in Figure 25, Mod.tick has the File.append annotation, meaning it should typecheck as
{File} →{File.append} Unit. Both Mod and Ftor are annotated.

Our Wyvern examples are simplified in several ways so they can be expressed in CC.
The only objects used are modules. The modules only ever contain one function and the

4 We could also define an unannotated version of let, but we only need the annotated version.
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1 require File
2

3 import Mod
4 instantiate Ftor(File)
5

6 Mod.tick(File)
7 Ftor.tick()

Figure 26 The client program instantiates Mod and Ftor and then invokes tick on each.

capabilities they require; they have no mutable fields. There are no self-referencing modules
or recursive functions. Modules do not reference each other cyclically. These simplifications
enable us to model each module as a function. Applying the function will be equivalent to
applying the single function defined by the module. A collection of modules is translated into
CC as follows. First, a sequence of let-bindings are used to associate the name of a module
with the function defined in it, and to associate the name of a functor with a constructor
function that, when given the capabilities requested by a functor, will return the function
representing a module instance. The constructor for a functor F is called MakeF. If the
module does not require any capabilities it takes Unit as its argument. A function is then
defined which represents the body of code in the main program. When invoked, this function
will instantiate all the functors by invoking their constructors and then will execute the code
in from the main program. Finally, the function representing the program is invoked with
the primitive capabilities that are passed in from the system environment.

Figure 27 shows how the examples above translate. Lines 1-2 define the module Mod.
Lines 4-6 define the constructor for Ftor. It requires a File capability, so the constructor
takes {File} as its input type on line 5. The constructor for the main program is defined on
lines 8-12, which instantiates Ftor and runs the main program code. Line 14 starts execution
by invoking MakeMain with the initial set of capabilities, which in this case is just File.

1 let Mod =
2 λf: {File}. f.append in
3

4 let MakeFtor =
5 λf: {File}.
6 λx: Unit. f.append in
7

8 let MakeMain =
9 λf: {File}.

10 let Ftor = (MakeFtor f) in
11 let r1 = (Mod f) in
12 Ftor unit
13

14 MakeMain File

Figure 27 Translation of Mod and Ftor into CC.

When an unannotated module is translated into CC, the translated contents will be
encapsulated with an import expression. The selected authority on the import expression
will be that we expect of the unannotated code according to the principle of least authority
in the particular example under consideration. For example, if the client only expects the
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unannotated code to have the File.append effect, the corresponding import expression will
select {File.append}.

5 Applications

In this section we show how the capability-based design of CC can assist in reasoning about
the effects and behaviour of a program. We present several scenarios which demonstrate
unsafe behaviour or a particular developer story. This takes the form of writing a Wyvern
program, translating it to CC using the techniques of the previous section, and then explaining
how the rules of CC apply. In discussing these examples, we hope to illustrate where the
rules of CC may arise in practice, and convince the reader that they adequately capture the
intuitive properties of capability-safe languages like Wyvern.

5.1 Unannotated Client
There is a single primitive capability File. A logger module possessing this capability
exposes a function log which incurs File.write when executed. The client module,
possessing the logger module, exposes a functino run which invokes logger.log, incurring
File.write. While logger has been annotated, client has not — if client.run is executed,
what effects might it have? Code for this example is given below.

1 module def logger(f: {File}):Logger
2

3 def log(): Unit with {File.append} =
4 f.append(‘‘message logged’’)

1 module def client(logger: Logger)
2

3 def run(): Unit =
4 logger.log()

1 require File
2

3 instantiate logger(File)
4 instantiate client(logger)
5

6 client.run()

The translation is given below. It first creates two functions, MakeLogger and MakeClient,
which instantiate the logger and client modules. Lines 1-3 define MakeLogger. When
given a File, it returns a function representing logger.log. Lines 5-8 define MakeClient.
When given a Logger, it returns a function representing client.run. Lines 10-15 define
MakeMain which returns a function which, when executed, instantiates all other modules and
invokes the code in the body of Main. Program execution begins on line 16, where Main is
given the initial capabilities — which, in this case, is just File.

1 let MakeLogger =
2 (λf: File.
3 λx: Unit. f.append) in
4

5 let MakeClient =
6 (λlogger: Unit →{File.append} Unit.
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7 import(File.append) l = logger in
8 λx: Unit. l unit) in
9

10 let MakeMain =
11 (λf: File.
12 let loggerModule = MakeLogger f in
13 let clientModule = MakeClient loggerModule in
14 clientModule unit) in
15

16 MakeMain File

The interesting part is on line 7 where the unannotated code selects {File.append} as its
authority. This is exactly the effects of the logger, i.e. effects(Unit→{File.append} Unit) =
{File.append}. The code also satisfies the higher-order safety predicates, and the body of
the import expression typechecks in the empty context. Therefore, the unannotated code
typechecks by ε-Import with approximate effects {File.append}.

5.2 Unannotated Library
The next example inverts the roles of the last scenario: now, the annotated client wants
to use the unannotated logger. logger captures File and exposes a single function log
which incurs the File.append effect. client has a function run which executes logger.log,
incurring its effects. client.run is annotated with ∅, so the implementation of logger.log
violates its interface.

1 module def logger(f: {File}): Logger
2

3 def log(): Unit =
4 f.append(‘‘message logged’’)

1 module def client(logger: Logger)
2

3 def run(): Unit with {File.append} =
4 logger.log()

1 require File
2

3 instantiate logger(File)
4 instantiate client(logger)
5

6 client.run()

The translation is given below. On lines 3-4, the unannotated code is wrapped in an import
expression selecting {File.append} as its authority. The implementation of logger actually
abides by this selected authority, but it has the authority to perform any operation on File, so
it could, in general, invoke any of them. ε-Import rejects this example because the imported
capability has the type {File} and effects({File}) = {File.∗} 6⊆ {File.append}.

1 let MakeLogger =
2 (λf: File.
3 import(File.append) f = f in
4 λx: Unit. f.append) in
5
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6 let MakeClient =
7 (λlogger: Logger.
8 λx: Unit. logger unit) in
9

10 let MakeMain =
11 (λf: File.
12 let loggerModule = MakeLogger f in
13 let clientModule = MakeClient loggerModule in
14 clientModule unit) in
15

16 MakeMain File

The only way for this to typecheck would be to annotate client.run as having every
effect on File. This demonstrates how the effect-system of CC approximates unannotated
code: it simply considers it as having every effect which could be incurred on those resources
in scope, which here is File.∗.

5.3 Higher-Order Effects
In this scenario, Main gains its functionality from a plugin. Plugins might be written by
third-parties, in which case we may not be able to view their source code, but still want
to reason about the authority they exercise. In this example, plugin has access to a File
capability, but its int erface does not permit it to perform any operations on File. It tries
to subvert this by wrapping the capability inside a function and passing it to malicious,
which invokes File.read in a higher-order manner in an unannotated context.

1 module malicious
2

3 def log(f: Unit → Unit): Unit
4 f()

1 module plugin
2 import malicious
3

4 def run(f: {File}): Unit with ∅
5 malicious.log(λx:Unit. f.read)

1 require File
2 import plugin
3

4 plugin.run(File)

This example shows how higher-order effects can obfuscate potential security risks. On
line 3 of malicious, the argument to log has type Unit → Unit. The body of log types
with the T-rules, which do not approximate effects. It is not clear from inspecting the
unannotated code that a File.read will be incurred. To realise this requires one to examine
the source code of both plugin and malicious.

A translation is given below. On lines 2-3, the malicious code selects its authority
as ∅, to be consistent with the annotation on plugin.run. This example is rejected by
ε-Import. When the unannotated code is annotated with ∅, it has type {File} →∅ Unit.
The higher-order effects of this type are File.∗, which is not contained in the selected
authority ∅ — hence, ε-Import safely rejects the program.
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1 let malicious =
2 (import(∅) y=unit in
3 λf: Unit → Unit. f()) in
4

5 let plugin =
6 (λf: {File}.
7 malicious(λx:Unit. f.read)) in
8

9 let MakeMain =
10 (λf: {File}.
11 plugin f) in
12

13 MakeMain File

To get this example to typecheck, the import expression has to select {File.∗} as its
authority, and plugin.run needs to be annotated with {File.∗}. In other words, the program
would have to be rewritten to explicitly say that plugins can exercise authority over File.

5.4 Resource Leak
This is another example which obfuscates an unsafe effect by invoking it in a higher-order
manner. The setup is the same, except the function which plugin passes to malicious
now returns File when invoked. malicious uses this function to obtain File and directly
invokes read upon it, violating the supposed purity of plugin.

1 module malicious
2

3 def log(f: Unit → File):Unit
4 f().read

1 module plugin
2 import malicious
3

4 def run(f: {File}): Unit with ∅
5 malicious.log(λx:Unit. f)

1 require File
2

3 import plugin
4

5 plugin.run(File)

The translation is given below. The unannotated code in malicious is given on lines 5-6.
The selected authority is ∅, to be consistent with the annotation on plugin. Nothing is being
imported, so the import binds a name y to unit. This example is rejected by ε-Import
because the premise ε = effects(τ̂) ∪ ho-effects(annot(τ, ε)) is not satisfied. In this case,
ε = ∅ and τ = (Unit→ {File})→ Unit. Then annot(τ, ε) = (Unit→∅ {File})→∅ Unit
and ho-effects(annot(τ, ε)) = {File.∗}. Thus, the premise cannot be satisfied and the
example is safely rejected.

1 let malicious =
2 (import(∅) y=unit in
3 λf: Unit → {File}. f().read) in
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4

5 let plugin =
6 (λf: {File}.
7 malicious(λx:Unit. f)) in
8

9 let MakeMain =
10 (λf: {File}.
11 plugin f) in
12

13 MakeMain File

6 Conclusions

We introduced OC, a lambda calculus with primitive capabilities and their effects. OC programs
are fully annotated with their effects. Relaxing this requirement, we obtained CC, which
allows unannotated code to be nested inside annotated code with a new import construct.
The capability-safe design of CC allows us to safely infer the effects of unannotated code
by inspecting what capabilities are passed into it by its annotated surroundings. Such an
approach allows code to be incrementally annotated, giving developers a balance between
safety and convenience and alleviating the verbosity that has discouraged widespread adoption
of effect systems [18].

More broadly, our results demonstrate that the most basic form of capability-based
reasoning—that you can infer what code can do based on what capabilities are passed to
it—is not only useful for informal reasoning, but can improve formal reasoning about code
by reducing the necessary annotation overhead.

6.1 Related Work

While much related work has already been discussed as part of the presentation, here we
cover some additional strands related to capabilities and effects.

Capabilities were introduced by [2] to control which processes in an operating system had
permission to access which operating system resources. These early ideas were adapted to
the programming language setting as the object capability model, exemplified in the work of
Mark [15], which constrains how permissions may proliferate among objects in a distributed
system. [12] formalised the notion of a capability-safe language and showed that a subset
of Caja (a Javascript implementation) is capability-safe. Miller’s model has been applied
to more heavyweight systems: [5] combined Hoare logic with capabilities to formalise the
notion of trust. Capability-safety parallels have been explored in the operating systems
literature, where similar restrictions on dynamic loading and resource access [6] enable static,
lightweight analyses to enforce privilege separation [11].

The original effect system by [9] was used to determine what expressions could safely
execute in parallel. Subsequent applications include determining what functions a program
might invoke [20] and what regions in memory might be accessed or updated during execution
[19]. In these systems, “effects” are performed upon “regions”; in ours, “operations” are
performed upon “resources”’. CC also distinguishes between unannotated and annotated code:
only the latter will type-and-effect-check. Another capability-based effect system is the one
by [3], who use effect polymorphism and possible world semantics to express behavioural
invariants on data structures. CC is not as expressive, since it only topographically inspects
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how capabilities can be passed around a program, but the resulting formalism and theory is
much more lightweight.

6.2 Future Work
Our effects model only the use of capabilities which manipulate system resources. This
definition could be generalised to track other sorts of effects, such as stateful updates. In our
model, resources and operations are fixed throughout runtime; it would be interesting to
consider the theory when they can be created and destroyed at runtime.

Many believe in the value of the object capability model, but we do not fully understand
its formal benefits. We hope to extend the ideas in this paper to the point where they
might be used in capability-safe languages to help authority-safe design and development.
Implementing these ideas in a general-purpose, capability-safe language such as Wyvern
(where an effect system is currently being designed) would do much towards that end.

While we have captured the most obvious and basic form of capability-based reasoning
about effects, the ideas here could potentially be useful in other kinds of formal reasoning
system. Furthermore, there may be other kinds of reasoning about capabilities—e.g. those
being explored by [5]—that also provide benefit in a broad set of formal tools.
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A OC Proofs

I Lemma 14 (OC Canonical Forms). Unless the rule used is ε-Subsume, the following are
true:
1. If Γ ` x : τ with ε then ε = ∅.
2. If Γ ` v : τ with ε then ε = ∅.
3. If Γ ` v : {r̄} with ε then v = r and {r̄} = {r}.
4. If Γ ` v : τ1 →ε′ τ2 with ε then v = λx : τ.e.

Proof.
1. The only rule that applies to variables is ε-Var which ascribes the type ∅.
2. By definition a value is either a resource literal or a lambda. The only rules which can

type values are ε-Resource and ε-Abs. In the conclusions of both, ε = ∅.
3. The only rule ascribing the type {r̄} is ε-Resource. Its premises imply the result.
4. The only rule ascribing the type τ1 →ε′ τ2 is ε-Abs. Its premises imply the result.
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I Theorem 15 (OC Progress). If Γ ` e : τ with ε and e is not a value or variable, then
e −→ e′ | ε, for some e′, ε.

Proof. By induction on Γ ` e : τ with ε.

Case: ε-Var, ε-Resource, or ε-Abs. Then e is a value or variable and the theorem
statement holds vacuously.

Case: ε-App. Then e = e1 e2. If e1 is not a value or variable it can be reduced
e1 −→ e′1 | ε by inductive assumption, so e1 e2 −→ e′1 e2 | ε by E-App1. If e1 = v1 is a
value and e2 a non-value, then e2 can be reduced e2 −→ e′2 | ε by inductive assumption, so
e1 e2 −→ v1 e

′
2 | ε by E-App2. Otherwise e1 = v1 and e2 = v2 are both values. By inversion

on ε-App and canonical forms, Γ ` v1 : τ2 →ε′ τ3 with ∅, and v1 = λx : τ2.ebody. Then
(λx : τ.ebody)v2 −→ [v2/x]ebody | ∅ by E-App3.

Case: ε-OperCall. Then e = e1.π. If e1 is a non-value it can be reduced e1 −→ e′1 | ε
by inductive assumption, so e1.π −→ e′1.π | ε by E-OperCall1. Otherwise e1 = v1 is a
value. By inversion on ε-OperCall and canonical forms, Γ ` v1 : {r} with {r.π}, and
v1 = r. Then r.π −→ unit | {r.π} by E-OperCall2.

Case: ε-Subsume. If e is a value or variable, the theorem holds vacuously. Otherwise by
inversion on ε-Subsume, Γ ` e : τ ′ with ε′, and e −→ e′ | ε by inductive assumption.

J

I Lemma 16 (OC Substitution). If Γ, x : τ ′ ` e : τ with ε and Γ ` v : τ ′ with ∅ then
Γ ` [v/x]e : τ with ε.

Proof. By induction on the derivation of Γ, x : τ ′ ` e : τ with ε.

Case: ε-Var. Then e = y is a variable. Either y = x or y 6= x. Suppose y = x. By
applying canonical Forms to the theorem assumption Γ, x : τ ′ ` e : τ ′ with ∅, hence τ ′ = τ .
[v/x]y = [v/x]x = v, and by assumption, Γ ` v : τ ′ with ∅, so Γ ` [v/x]y : τ with ∅.

Otherwise y 6= x. By applying canonical forms to the theorem assumption Γ, x : τ ′ ` y :
τ with ∅, so y : τ ∈ Γ. Since [v/x]y = y, then Γ ` y : τ with ∅ by ε-Var.

Case: ε-Resource. Because e = r is a resource literal then Γ ` r : {r} with ∅ by
canonical forms. By definition [v/x]r = r, so Γ ` [v/x]r : {r̄} with ∅.

Case: ε-App. By inversion Γ, x : τ ′ ` e1 : τ2 →ε3 τ3 with εA and Γ, x : τ ′ ` e2 :
τ2 with εB, where ε = εA ∪ εB ∪ ε3 and τ = τ3. From inversion on ε-App and inductive
assumption, Γ ` [v/x]e1 : τ2 →ε3 τ3 with εA and Γ ` [v/x]e2 : τ2 with εB. By ε-App
Γ ` ([v/x]e1)([v/x]e2) : τ3 with εA ∪ εB ∪ ε3. By simplifying and applying the definition of
substitution, this is the same as Γ ` [v/x](e1 e2) : τ with ε.

Case: ε-OperCall. By inversion Γ, x : τ ′ ` e1 : {r̄} with ε1 and τ = Unit and
ε = ε1 ∪ {r.π | r ∈ r̄, π ∈ Π}. By inductive assumption, Γ ` [v/x]e1 : {r̄} with ε1. Then
by ε-OperCall, Γ ` ([v/x]e1).π : Unit with ε1 ∪ {r.π | r.π ∈ r̄ ×Π}. By simplifying and
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applying the definition of substitution, this is the same as Γ ` [v/x](e1.π) : τ with ε.

Case: ε-Subsume. By inversion, Γ, x : τ ′ ` e : τ2 with ε2, where τ2 <: τ and ε2 ⊆ ε. By
inductive hypothesis, Γ ` [v/x]e : τ2 with ε2. Then Γ ` [v/x]e : τ with ε by ε-Subsume.

J

I Theorem 17 (OC Preservation). If Γ ` eA : τA with εA and eA −→ eB | ε, then τB <: τA

and εB ∪ ε ⊆ εA, for some eB , ε, τB , εB.

Proof. By induction on the derivation of Γ ` eA : τA with εA and then the derivation of
eA −→ eB | ε.

Case: ε-Var, ε-Resource, ε-Unit, ε-Abs. Then eA is a value and cannot be reduced,
so the theorem holds vacuously.

Case: ε-App. Then eA = e1 e2 and Γ ` e1 : τ2 −→ε3 τ3 with ε1 and Γ ` e2 : τ2 with ε2
and τB = τ3 and εA = ε1 ∪ ε2 ∪ ε3. In each case we choose τB = τA and εB ∪ ε = εA.

Subcase: E-App1. Then e1 e2 −→ e′1 e2 | ε. By inversion on E-App1, e1 −→ e′1 | ε.
By inductive hypothesis and ε-Subsume Γ ` v1 : τ2 −→ε3 τ3 with ε1. Then Γ ` e′1 e2 :
τ3 with ε1 ∪ ε2 ∪ ε3 by ε-App.

Subcase: E-App2. Then e1 = v1 is a value and e2 −→ e′2 | ε. By inversion on E-
App2, e2 −→ e′2 | ε. By inductive hypothesis and ε-Subsume Γ ` e′2 : τ2 with ε2. Then
Γ ` v1 e

′
2 : τ3 with ε1 ∪ ε2 ∪ ε3 by ε-App.

Subcase: E-App3. Then e1 = λx : τ2.ebody and e2 = v2 are values and (λx :
τ2.ebody) v2 −→ [v2/x]ebody | ∅. By inversion on the rule ε-App used to type λx : τ2.ebody,
we know Γ, x : τ2 ` ebody : τ3 with ε3. e1 = v1 and e2 = v2 are values, so ε1 = ε2 = ∅
by canonical forms . Then by the substitution lemma, Γ ` [v2/x]ebody : τ3 with ε3 and
εA = εB = ε.

Case: ε-OperCall. Then eA = e1.π and Γ ` e1 : {r̄} with ε1 and τA = Unit and
εA = ε1 ∪ {r.π | r ∈ r̄, π ∈ Π}.

Subcase: E-OperCall1. Then e1.π −→ e′1.π | ε. By inversion on E-OperCall1,
e1 −→ e′1 | ε. By inductive hypothesis and application of ε-Subsume, Γ ` e′1 : {r̄} with ε1.
Then Γ ` e′1.π : {r̄} with ε1 ∪ {r.π | r ∈ r̄, π ∈ Π} by ε-OperCall.

Subcase: E-OperCall2. Then e1 = r is a resource literal and r.π −→ unit | {r.π}.
By canonical forms, ε1 = ∅. By ε-Unit, Γ ` unit : Unit with ∅. Therefore τB = τA and
ε ∪ εB = {r.π} = εA. J

I Theorem 18 (OC Single-step Soundness). If Γ ` eA : τA with εA and eA is not a value,
then eA −→ eB | ε, where Γ ` eB : τB with εB and τB <: τA and εB ∪ ε ⊆ εA, for some
eB , ε, τB , εB.

Proof. If eA is not a value then the reduction exists by the progress theorem. The rest
follows by the preservation theorem. J
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I Theorem 19 (OC Multi-step Soundness). If Γ ` eA : τA with εA and eA −→∗ eB | ε, where
Γ ` eB : τB with εB and τB <: τA and εB ∪ ε ⊆ εA.

Proof. By induction on the length of the multi-step reduction.

Case: Length 0. Then eA = eB and τA = τB and ε = ∅ and εA = εB .

Case: Length n+ 1. By inversion the multi-step can be split into a multi-step of length
n, which is eA −→∗ eC | ε′, and a single-step of length 1, which is eC −→ eB | ε′′, where
ε = ε′ ∪ ε′′. By inductive assumption and preservation theorem, Γ ` eC : τC with εC and
Γ ` eB : τB with εB , where τC <: τA and εC ∪ ε′ ⊆ εA. By single-step soundness, τB <: τC

and εB ∪ ε′′ ⊆ εC . Then by transitivity, τB <: τ and εB ∪ ε′ ∪ ε′′ = εB ∪ ε ⊆ εA. J

B CC Proofs

I Lemma 20 (CC Canonical Forms). Unless the rule used is ε-Subsume, the following are
true:
1. If Γ̂ ` x : τ̂ with ε then ε = ∅.
2. If Γ̂ ` v̂ : τ̂ with ε then ε = ∅.
3. If Γ̂ ` v̂ : {r̄} with ε then v̂ = r and {r̄} = {r}.
4. If Γ̂ ` v̂ : τ̂1 →ε′ τ̂2 with ε then v̂ = λx : τ.ê.

Proof. Same as for OC. J

I Theorem 21 (CC Progress). If Γ̂ ` ê : τ̂ with ε and ê is not a value, then ê −→ ê′ | ε, for
some ê′, ε.

Proof. By induction on the derivation of Γ̂ ` ê : τ̂ with ε.

Case: ε-Module. Then ê = import(εs) x = êi in e. If êi is a non-value then êi −→ ê′i | ε
by inductive assumption and import(εs) x = êi in e −→ import(εs) x = ê′i in e | ε by E-
Module1. Otherwise êi = v̂i is a value and import(εs) x = v̂i in e −→ [v̂i/x]annot(e, εs) | ∅
by E-Module2. J

I Lemma 22 (CC Substitution). If Γ̂, x : τ̂ ′ ` ê : τ̂ with ε and Γ̂ ` v̂ : τ̂ ′ with ∅ then
Γ̂ ` [v̂/x]êA : τ̂ with ε.

Proof. By induction on the derivation of Γ̂, x : τ̂ ′ ` ê : τ̂ with ε.

Case: ε-Module. Then the following are true.

1. ê = import(εs) x = êi in e
2. Γ̂, y : τ̂ ′ ` êi : τ̂i with εi

3. y : erase(τ̂i) ` e : τ
4. Γ̂, y : τ̂ ′ ` import(εs) x = êi in e : annot(τ, εs) with εs ∪ εi

5. εs = effects(τ̂i) ∪ ho-effects(annot(τ,∅))
6. τ̂A = annot(τ, ε)
7. ε̂A = εs ∪ εi
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By applying inductive assumption to (2) Γ̂ ` [v̂/x]êi : τ̂i with εi. Then by ε-Module
Γ̂ ` import(εs) y = [v̂/x]êi in e : annot(τi, εs) with εs ∪ εi. By definition of substitution,
the form in this judgement is the same as [v̂/x]ê. J

I Lemma 23 (CC Approximation 1). If effects(τ̂) ⊆ ε and ho-safe(τ̂ , ε) then τ̂ <:
annot(erase(τ̂), ε).

I Lemma 24 (CC Approximation 2). If ho-effects(τ̂) ⊆ ε and safe(τ̂ , ε) then annot(erase(τ̂), ε) <:
τ̂ .

Proof. By simultaneous induction on derivations of safe and ho-safe.

Case: τ̂ = {r̄} Then τ̂ = annot(erase(τ̂), ε) and the results for both lemmas hold
immediately.

Case: τ̂ = τ̂1 →ε′ τ̂2, effects(τ̂) ⊆ ε, ho-safe(τ̂ , ε) It is sufficient to show τ̂2 <:
annot(erase(τ̂2), ε) and annot(erase(τ̂1), ε) <: τ̂1, because the result will hold by S-
Effects. To achieve this we shall inductively apply lemma 1 to τ̂2 and lemma 2 to
τ̂1.

From effects(τ̂) ⊆ ε we have ho-effects(τ̂1) ∪ ε′ ∪ effects(τ̂2) ⊆ ε and therefore
effects(τ̂2) ⊆ ε. From ho-safe(τ̂ , ε) we have ho-safe(τ̂2, ε). Therefore we can apply lemma
1 to τ̂2.

From effects(τ̂) ⊆ ε we have ho-effects(τ̂1) ∪ ε′ ∪ effects(τ̂2) ⊆ ε and therefore
ho-effects(τ̂1) ⊆ ε. From ho-safe(τ̂ , ε) we have ho-safe(τ̂1, ε). Therefore we can apply
lemma 2 to τ̂1.

Case: τ̂ = τ̂1 →ε′ τ̂2, ho-effects(τ̂) ⊆ ε, safe(τ̂ , ε) It is sufficient to show annot(erase(τ̂2), ε) <:
τ̂2 and τ̂1 <: annot(erase(τ̂1), ε), because the result will hold by S-Effects. To achieve
this we shall inductively apply lemma 2 to τ̂2 and lemma 1 to τ̂1.

From ho-effects(τ̂) ⊆ ε we have effects(τ̂1) ∪ ho-effects(τ̂2) ⊆ ε and therefore
ho-effects(τ̂2) ⊆ ε. From safe(τ̂ , ε) we have safe(τ̂2, ε). Therefore we can apply lemma 2
to τ̂2.

From ho-effects(τ̂) ⊆ ε we have effects(τ̂1) ∪ ho-effects(τ̂2) ⊆ ε and therefore
effects(τ̂1) ⊆ ε. From safe(τ̂ , ε) we have ho-safe(τ̂1, ε). Therefore we can apply lemma 1
to τ̂1.

J

I Lemma 25 (CC Annotation). If the following are true:

1. Γ̂ ` v̂i : τ̂i with ∅
2. Γ, y : erase(τ̂i) ` e : τ
3. effects(τ̂i) ∪ ho-effects(annot(τ,∅)) ∪ effects(annot(Γ,∅)) ⊆ εs

4. ho-safe(τ̂i, εs)

Then Γ̂, annot(Γ, εs), y : τ̂i ` annot(e, εs) : annot(τ, εs) with εs.
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Proof. By induction on the derivation of Γ, y : erase(τ̂i) ` e : τ . When applying the
inductive assumption, e, τ , and Γ may vary, but the other variables are fixed.

Case: T-Var. Then e = x and Γ, y : erase(τ̂i) ` x : τ . Either x = y or x 6= y.

Subcase 1: x = y. Then y : erase(τ̂i) ` y : τ so τ = erase(τ̂i). By ε-Var,
y : τ̂i ` x : τ̂i with ∅. By definition annot(x, εs) = x, so (5) y : τ̂i ` annot(x, εs) : τ̂i with ∅.
By (3) and (4) we know effects(τ̂i) ⊆ εs and ho-safe(τ̂i, εs). By the approximation lemma,
τ̂i <: annot(erase(τ̂i), εs). We know erase(τ̂i) = τ , so this judgement can be rewritten as
τ̂i <: annot(τ, εs). From this we can use ε-Subsume to narrow the type of (5) and widen the
approximate effects of (5) from ∅ to εs, giving y : τ̂i ` annot(x, εs) : annot(τ, εs) with εs.
Finally, by widening the context, Γ̂, annot(Γ, εs), τ̂i ` annot(x, εs) : annot(τ, εs) with εs.

Subcase 2: x 6= y. Because Γ, y : erase(τ̂i) ` x : τ and x 6= y then x : τ ∈ Γ. Then
x : annot(τ, εs) ∈ annot(Γ, εs) so annot(Γ, εs) ` x : annot(τ, εs) with ∅ by ε-Var. By
definition annot(x, εs) = x, so annot(Γ, εs) ` annot(x, εs) : annot(τ, εs) with ∅. Applying
ε-Subsume gives annot(Γ, εs) ` annot(x, εs) : annot(τ, εs) with εs. By widening the context
Γ̂, annot(Γ, εs), y : τ̂i ` annot(τ, εs) with ε′.

Case: T-Resource. Then Γ, y : erase(τ̂i) ` r : {r}. By ε-Resource, Γ̂, annot(Γ, ε), y :
τ̂i ` r : {r} with ∅. Applying definitions, annot(r, ε) = r and annot({r}, εs) = {r}, so this
judgement can be rewritten as Γ̂, annot(Γ, ε), y : τ̂i ` annot(e, εs) : annot(τ, εs) with ∅. By
ε-Subsume, Γ̂, annot(Γ, εs), y : τ̂i ` annot(e, εs) : annot(τ, εs) with εs.

Case: T-Abs. Then Γ, y : erase(τ̂i) ` λx : τ2.ebody : τ2 → τ3. Applying defini-
tions, (5) annot(e, εs) = annot(λx : τ2.ebody, εs) = λx : annot(τ2, εs).annot(ebody, εs)
and annot(τ, εs) = annot(τ2 → τ3, εs) = annot(τ2, εs) →εs annot(τ3, εs). By inver-
sion on T-Abs, we get the sub-derivation (6) Γ, y : erase(τ̂i), x : τ2 ` ebody : τ2. We
shall apply the inductive assumption to this judgement with an unannotated context
consisting of Γ, x : τ2. To be a valid application of the lemma, it is required that
effects(annot(Γ, x : τ2,∅) ⊆ εs. We already know effects(annot(Γ,∅)) ⊆ εs by as-
sumption (3). Also by assumption (3), ho-effects(annot(τ2 → τ3,∅)) ⊆ εs; then by
definition of ho-effects, effects(annot(τ2,∅)) ⊆ ho-effects(annot(τ2 → τ3,∅)), so
effects(annot(x : τ2, ))εs) ⊆ εs by transitivity. Then by applying the inductive assumption
to (6), Γ̂, annot(Γ, εs), annot(x : τ2, εs), y : τ̂i ` annot(ebody, εs) : annot(τ3, εs) with εs.
By ε-Abs, Γ̂, annot(Γ, εs), y : τ̂i ` λx : annot(τ̂2, εs).annot(ebody, εs) : annot(τ̂2, εs) →εs

annot(τ̂3, εs) with ∅. By applying the identities from (5), this judgement can be rewritten as
Γ̂, annot(Γ, εs), y : τ̂i ` annot(e, εs) : annot(τ, εs) with ∅. Finally, by applying ε-Subsume,
Γ̂, annot(Γ, εs), y : τ̂i ` annot(e, εs) : annot(τ, εs) with εs.

Case: T-App. Then Γ, y : erase(τ̂i) ` e1 e2 : τ3 and by inversion Γ, y : erase(τ̂i) `
e1 : τ2 → τ3 and Γ, y : erase(τ̂i) ` e2 : τ2. By applying the inductive assumption to these
judgements, Γ̂, annot(Γ, εs), y : τ̂i ` annot(e1, ε2) : annot(τ2, εs)→εs

annot(τ3, εs) with εs

and Γ̂, annot(Γ, εs), y : τ̂ ` annot(e2, εs) : annot(τ2, εs) with εs. Then by ε-App, we get
Γ̂, annot(Γ, εs), y : τ̂ `
annot(e1, εs) annot(e2, εs) : annot(τ3, ε) with ε. Unfolding the definition of annot , this
judgement can be rewritten as Γ̂, annot(Γ, εs), y : τ̂ ` annot(e1 e2, εs) : annot(τ3, ε) with ε.
Finally, because e = e1 e2 and τ = τ3, this is the same as Γ̂, annot(Γ, εs), y : τ̂ ` annot(e, εs) :
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annot(τ, ε) with ε.

Case: T-OperCall. Then Γ, y : erase(τ̂i) ` e1.π : Unit. By inversion we get the sub-
derivation Γ, y : erase(τ̂i) ` e1 : {r̄}. Applying the inductive assumption, Γ̂, annot(Γ, ε), y :
τ̂i ` annot(e1, εs) : annot({r̄}, εs) with εs. By definition, annot({r̄}, εs) = {r̄}, so this
judgement can be rewritten as Γ̂, annot(Γ,∅), y : τ̂i ` e1 : {r̄} with εs. By ε-OperCall,
Γ̂, annot(Γ,∅), y : τ̂ ` annot(e1.π, εs) : {r̄} with εs ∪ {r̄.π}. All that remains is to show
{r̄.π} ⊆ ε. We shall do this by considering which subcontext left of the turnstile is capturing
{r̄}. Technically, Γ̂ may not have a binding for every r ∈ r̄: the judgement for e1 might
be derived using S-Resources and ε-Subsume. However, at least one binding for some
r ∈ r̄ must be present in Γ̂ to get the original typing judgement being subsumed, so we shall
assume without loss of generality that Γ̂ contains a binding for every r ∈ r̄.

Subcase 1: {r̄} = τ̂ . By assumption (3), effects(τ̂) ⊆ εs, so r̄.π ⊆ {r.π | r ∈ r̄, π ∈
Π} = effects({r̄}) ⊆ εs.

Subcase 2: r : {r̄} ∈ annot(Γ, εs). Then r̄.π ∈ effects({r̄}) ⊆ effects(annot(Γ,∅)),
and by assumption (3) effects(annot(Γ,∅)) ⊆ εs, so r̄.π ∈ εs.

Subcase 3: r : {r̄} ∈ Γ̂. Because Γ, y : erase(τ̂) ` e1 : {r̄}, then r̄ ∈ Γ or r = τ .
If r ∈ annot(Γ,∅) then subcase 2 holds. Else r = erase(τ̂). Because τ̂ = {r̄}, then
erase({r̄}) = {r̄}, so τ̂ = τ ; therefore subcase 1 holds. J

I Theorem 26 (CC Preservation). If Γ̂ ` êA : τ̂A with εA and êA −→ êB | ε, then Γ̂ ` êB :
τ̂B with εB, where êB <: êA and ε ∪ εB ⊆ εA, for some êB , ε, τ̂B , εB.

Proof. By induction on the derivation of Γ̂ ` êA : τ̂A with εA and then the derivation of
êA −→ êB | ε.

Case: ε-Import. Then by inversion on the rules used, the following are true:

1. êA = import(εs) x = v̂i in e
2. x : erase(τ̂i) ` e : τ
3. Γ̂ ` êi : τ̂i with ε1
4. Γ̂ ` êA : annot(τ, εs) with εs ∪ ε1
5. effects(τ̂i) ∪ ho-effects(annot(τ,∅)) ⊆ εs

6. ho-safe(τ̂i, εs)

Subcase 1: E-Import1. Then import(εs) x = êi in e −→ import(εs) x = ê′i in e | ε
and by inversion, êi −→ ê′i | ε. By inductive assumption and subsumption, Γ̂ ` ê′i : τ̂ ′i with ε1.
Then by ε-Import, Γ̂ ` import(εs) x = ê′i in e : annot(τ, εs) with εs.

Subcase 2: E-Import2. Then êi = v̂i is a value and ε1 = ∅ by canonical forms. Apply
the annotation lemma with Γ = ∅ to get Γ̂, x : τ̂i ` annot(e, εs) : annot(τ, εs) with εs.
From assumption (4) and canonical forms we have Γ̂ ` v̂ : τ̂i with ∅. Applying the
substitution lemma, Γ̂ ` [v̂i/x]annot(e, ε) : annot(τ, εs) with εs. Then ε ∪ εB = εA = εs

and τA = τB = annot(τ, εs).
J
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I Theorem 27 (CC Single-step Soundness). If Γ̂ ` êA : τ̂A with εA and êA is not a value,
then êA −→ êB | ε, where Γ̂ ` êB : τ̂B with εB and τ̂B <: τ̂A and εB ∪ ε ⊆ εA, for some êB,
ε, τ̂B, and εB.

I Theorem 28 (CC Multi-step Soundness). If Γ̂ ` êA : τ̂A with εA and êA −→∗ eB | ε, then
Γ̂ ` êB : τ̂B with εB, where τ̂B <: τ̂A and εB ∪ ε ⊆ εA, for some τ̂B, εB.

Proof. The same as for OC. J
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