VICTORIA UNIVERSITY OF WELLINGTON ### SCHOOL OF ENGINEERING AND COMPUTER SCIENCE # Introduction to Artificial Intelligence - Course Outline COMP 307: 2011 Trimester 1 Artificial Intelligence (AI) is a branch of computer science which studies tasks that are difficult to solve. Some of these tasks can be easily performed by human but are difficult to program computers to do. Some other tasks are very difficult or very time consuming to solve even by human experts. Examples include planning a holiday, learning to drive a car, having a sensible conversation, learning to predict fog at Wellington Airport, reading a web page to get the answer to a question, designing a physics experiment, recognising handwritten digits, detecting terrorists by checking fingerprints, or optimising parameter values in complex engineering problems. COMP 307 is an introduction to the ideas and techniques that computer scientists have developed to address these kinds of tasks. The lectures cover six main topics: the Prolog language, knowledge representation and reasoning, natural language processing, machine learning, evolutionary computation, and search techniques. The course includes a substantial amount of programming. The course will cover both science and engineering applications. This document sets out the workload and assessment requirements for COMP 307. It also provides contact information for staff involved in the course. If the contents of this document are altered during the course, you will be advised of the change by an announcement in lectures and/or on the course web site. A printed copy of this document is held in the School Office. # **Objectives** By the end of the course, students should be able to: - 1. Understand fundamental concepts and techniques of artificial intelligence, in areas such as search, machine learning, evolutionary computing, rule based systems and natural language processing. (BE 3(a), 3(c), 3(d), 3(e)); (BSc COMP 1, 2, 3, 4) - 2. Apply these concepts to specific problems (including engineering applications). (BE 3(a), 3(c), 3(d), 3(e), 3(f)); (BSc COMP 1, 2, 3, 4) The course will introduce you to some of the important topics in Artificial Intelligence. Writing programs is a significant component of the course because many of the subtleties and difficulties encountered in AI only become apparent when one actually tries to write programs to perform specific tasks. The programming assignments serve to both increase your understanding of the relevant concepts and techniques, and also to give you confidence in being able to apply the techniques to real problems. ## **Textbook** The textbook for COMP 307 is: Stuart J. Russell and Peter Norvig, *Artificial Intelligence. A Modern Approach*, Prentice-Hall, NJ, 3rd edition, 2009. (You can visit the home-page for this text. It has the list of contents and some sample sections.) ## Lectures, Tutorials, Laboratories, and Practical work The trimester starts on Mon 28 Feb and ends on 3 June. The examination period at the end of the course is 10 - 29 June. A schedule of lecture topics, readings, and assignment due dates is available online. Lectures for COMP 307 are: *Mon Thu 12:00-12:50, Hugh Mackenzie LT002.* Friday lecture time is often used for optional tutorials. Details will be announced in lectures. For the 1st week, there are not any tutorials or help desks. We will also run extra tutorials or help desks in some weeks. Date/time/location will be announced in the lectures. # Assignments and Projects There will be four assignments, handed out at week 2, 5, 6 and 9, and due three weeks later. Each assignment is worth 5%, 4%, 10% and 6% respectively. The assignments will involve a combination of programming and discussion. All assignments must be handed in on time unless you have made a prior arrangement with the lecturer or have a valid medical excuse (for minor illnesses it is sufficient to discuss this with the lecturer.) The penalty for assignments that are handed in late without prior arrangement is 10% per day. Assignments that are more than one week late will not be marked. ### Workload In order to maintain satisfactory progress in COMP 307, you should plan to spend an average of at least 10 hours per week on this paper. A plausible and approximate breakdown for these hours would be: - · Lectures and tutorials: 3 hours - Readings, revision and preparation: 2 hours - · Assignments: 5 hours If assignments are left until the last minute, the amount of work spent in particular weeks may vary greatly. # School of Engineering and Computer Science The School office is located on level three of the Cotton Building (Cotton 358). The notice board for COMP 307 is located on the second floor of the Cotton Building. #### Staff The course organizer for COMP 307 is <u>Xiaoying Sharon Gao</u>. The lecturers for the course are <u>Xiaoying Sharon Gao</u> and <u>Mengjie Zhang</u>. Their contact details are: - Xiaoying Sharon Gao - Cotton 442 - +64 4 463 5978 - xiaoying.gao@ecs.vuw.ac.nz - Mengjie Zhang - Cotton 427 - +64 4 463 5654 - mengjie.zhang@ecs.vuw.ac.nz The tutors are *Urvesh Bhowan*, <u>urveshb@gmail.com</u>, *Dr Jingxuan Wei*, <u>jingxuan@ecs.vuw.ac.nz</u>, and *Carlton Downey*, <u>downeycarl@gmail.com</u>. #### Announcements and Communication The main means of communication outside of lecture will be the COMP 307 web area at http://ecs.victoria.ac.nz/Courses/COMP307 2011T1/. There you will find, among other things, this document, the lecture schedule and assignment handouts, and the COMP307 2011T1/. There you will find, among other things, this document, the lecture schedule and assignment handouts, and the COMP307 Forum. The forum is a web-based bulletin board system. Questions and comments can be posted to the forum, and staff will read these posts and frequently respond to them. Important announcements may also be given in lectures and/or by email. We will assume that all students attend lectures, read the announcements on the web page and read your ecs emails at least once a week. ## **Assessment** Your grade for COMP 307 will be determined based on the following assessment weightings: | <u>Item</u> | Weight | |-------------------|--------| | Assignment 1 | 5% | | Assignment 2 | 4% | | Assignment 3 | 10% | | Assignment 4 | 6% | | Final Examination | 75% | ## **Exams** The <u>timetable for final examinations</u> will be available from the University web site and will be posted on a notice board outside the faculty office. The final examination will be three hours long. No computers, electronic calculators or similar device will be allowed in the final examination. Paper non-English to English dictionaries will be permitted. Calculators will be permitted in the examination as long as they are non-programmable and cannot store any text. The study and examination period for trimester T1 is 10 - 29 June. ## Plagiarism Working Together and Plagiarism We encourage you to discuss the principles of the course and assignments with other students, to help and seek help with programming details, problems involving the lab machines. However, any work you hand in must be your own work. The School policy on Plagiarism (claiming other people's work as your own) is available from the course home page. Please read it. We will penalize anyone we find plagiarising, whether from students currently doing the course, or from other sources. Students who knowingly allow other students to copy their work may also be penalized. If you have had help from someone else (other than a tutor), it is always safe to state the help that you got. For example, if you had help from someone else in writing a component of your code, it is not plagiarism as long as you state (eg, as a comment in the code) who helped you in writing the method. ## Mandatory Requirements The mandatory requirement for the course is to achieve at least a D on the final exam. # Passing COMP 307 To pass COMP 307, a student must satisfy mandatory requirements and gain at least a **C** grade overall. #### Withdrawal The last date for withdrawal from COMP 307 with entitlement to a refund of tuition fees is Fri 11 March 2011. The last date for withdrawal without being regarded as having failed the course is Fri 13 May 2011 -- though later withdrawals may be approved by the Dean in special circumstances. ## **Rules & Policies** Find key dates, explanations of grades and other useful information at http://www.victoria.ac.nz/home/study. Find out about academic progress and restricted enrolment at http://www.victoria.ac.nz/home/study/academic-progress. The University's statutes and policies are available at http://www.victoria.ac.nz/home/about/policy, except qualification statutes, which are available via the Calendar webpage at http://www.victoria.ac.nz/home/study/calendar (See Section C). Further information about the University's academic processes can be found on the website of the Assistant Vice-Chancellor (Academic) at http://www.victoria.ac.nz/home/about/avcacademic All students are expected to be familiar with the following regulations and policies, which are available from the school web site: <u>Grievances</u> Student and Staff Conduct Meeting the Needs of Students with Disabilities Student Support Academic Integrity and Plagiarism Dates and Deadlines including Withdrawal dates School Laboratory Hours and Rules Printing Allocations Expectations of Students in ECS courses The School of Engineering and Computer Science strives to anticipate all problems associated with its courses, laboratories and equipment. We hope you will find that your courses meet your expectations of a quality learning experience. If you think we have overlooked something or would like to make a suggestion feel free to talk to your course organiser or lecturer.